Advertisement

The Distinct Element Method — Application to Structures in Jointed Rock

  • Joseph Morris
  • Lew Glenn
  • Stephen Blair
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 26)

Abstract

This paper presents a brief review of the distinct element method (DEM) with particular emphasis on techniques for handling contact detection. In addition, various approaches for parallelization are considered. Our primary focus is on applying the DEM to simulations of the attack and defense of buried facilities. Some continuum approaches to this problem are discussed along with results from underground explosions. Finally, our DEM code is used to simulate dynamic loading of a tunnel in jointed rock and preliminary results are presented demonstrating the suitability of the DEM for this application.

Keywords

Rock Mass Discrete Element Method Distinct Element Jointed Rock Rock Bolt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonellini M.A., Pollard D.D. (1995) Distinct element modeling of deformation bands in sandstone. J. Struct. Geol., 17:1165–1182CrossRefGoogle Scholar
  2. 2.
    Carrillo A.R., West J.E., Horner D.A., Peters J.F. (1999) Interactive large-scale soil modeling using distributed high performance computing environments. Int. J. High Perf. Comput. Appl., 13:1:33–48Google Scholar
  3. 3.
    Cleary P.W. (1991) Extensions of the hybrid method for granular flows. In: Proc. 5th International Computational Techniques and Applications Conference, Adelaide, AustraliaGoogle Scholar
  4. 4.
    Cleary P.W., M.L. Sawley (1999) Three-dimensional modelling of industrial granular flows. In: Second International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 95–100Google Scholar
  5. 5.
    Cundall P.A. (1980) UDEC-A generalized distinct element program for modelling jointed rock, Final Tech. Rep. Eur. Res. Office (US Army Contract DAJA37-79-C-0548); NTIS order No. AD-A087 610/2Google Scholar
  6. 6.
    Cundall P.A. (1988) Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 25:107–116Google Scholar
  7. 7.
    Cundall P.A. (2001) A Discontinuous Future for Numerical Modelling in Geomechanics? Geotech. Eng., 149:1:41–47Google Scholar
  8. 8.
    Cundall P.A., Hart R.D. (1985) Development of generalized 2-D and 3-D disinct element programs for modeling jointed rock, Misc. Paper SL-85-1, US Army Corps of EngineersGoogle Scholar
  9. 9.
    Cundall P.A., Hart D.H. (1992) Numerical Modelling of Discontinua. Eng. Comput., 9:101–113CrossRefGoogle Scholar
  10. 10.
    Cundall P.A., Strack O.D.L. (1979) A discrete numerical model for granular assemblies. Géotechnique, 29:47–65CrossRefGoogle Scholar
  11. 11.
    Dowding CH., Dmytryshyn O., Belytschko T.B. (1999) Parallel processing for a discrete element program Comput. Geotech. 25:4:281–285Google Scholar
  12. 12.
    Ghaboussi J., Basole M.M., Ranjithan S. (1993) Three-dimensional discrete element analysis on massively parallel computers. In: Second International Conference on Discrete Element Methods, MIT, Cambridge, MAGoogle Scholar
  13. 13.
    Hahn J.K. (1988) Realistic animation of rigid bodies. Comp. Graph. 22:299–308CrossRefGoogle Scholar
  14. 14.
    Hart R., Cundall P.A., Lemos J. (1988) Formulation of a Three-dimensional Distinct Element Model- Part II. Mechanical Calculations for Motion and Interaction of a System Composed of Many Polyhedral Blocks. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 25:117–125Google Scholar
  15. 15.
    Heuzé F.E., Walton O.R., Maddix D.M., Shaffer R.J., Butkovich TR. (1993) Analysis of Explosions in Hard Rocks: The Power of Discrete Element Modeling. In: Hudson J.A., Brown E.T., Fairhurst C, Hoek E. (Eds.) Comprehensive Rock Engineering, Vol. 2, Analysis and Design Methods, Pergamon Press, 387–413Google Scholar
  16. 16.
    Horner D.A., Carrillo A.R., Peters J.F., West J.E. (1998) High resolution soil vehicle interaction modeling. Mech. Struct. & Mach., 26:3:305–318CrossRefGoogle Scholar
  17. 17.
    Lomov I., Antoun T., Glenn L. (2001) Explosion in the granite field: Hardening and softening behavior in rocks. In: Proceedings of 12th APS Topical Conference, Shock Compression of Condensed Matter, June 24–29, Atlanta, GeorgiaGoogle Scholar
  18. 18.
    Lorig L.J., Brady B.H.G., Cundall P.A. (1986) Hybrid distinct element-boundary element analysis of jointed rock. Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., 23:4:303–312CrossRefGoogle Scholar
  19. 19.
    Morgan J.K. (1999) Numerical simulations of granular shear zones using the distinct element method 1. Shear zone kinematics and the micromechanics of localization. J. Geophys. Res., 104:B2:2703–2719CrossRefGoogle Scholar
  20. 20.
    Morgan J.K. (1999) Numerical simulations of granular shear zones using the distinct element method 2. Effects of particle size distribution and interparticle friction on mechanical behavior. J. Geophys. Res., 104:B2:2721–2732CrossRefGoogle Scholar
  21. 21.
    Mori K., Otsu M., Osakada K. (1997) Distinct element simulation of grain alignment in mushy-state forging of magnets. Int. J. Mech. Sci., 39:7:771–780CrossRefGoogle Scholar
  22. 22.
    Munjiza A., Owen D.R.J., Bicanic N. (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng. Comput. 12:145–174zbMATHCrossRefGoogle Scholar
  23. 23.
    Pan X.D., Reed, M.B. (1991) A coupled distinct element-finite element method for large deformation analysis of rock masses. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 28:1:93–99CrossRefGoogle Scholar
  24. 24.
    Rubin M.B., Vorobiev O.Y., Glenn L.A. (2000) Mechanical and numerical modeling of a porous elastic-viscoplastic material with tensile failure. International Journal of Solids and Structures 37:1841–1871zbMATHCrossRefGoogle Scholar
  25. 25.
    Sanderson D.J., Zhang X. (1998) Deformation, damage and fluid flow in fracture networks and around faults. Fall Meeting of the American Geophysical Union.Google Scholar
  26. 26.
    Sawamoto Y., Tsubota H., Kasai Y., Koshika N., Morikawa H. (1998) Analytical studies on local damage to reinforced concrete structures under impact loading by discrete element method. Nucl. Eng. Des., 179:157–177CrossRefGoogle Scholar
  27. 27.
    Sawley M.L., Cleary P.W. (1999) A parallel discrete element method for industrial granular flow simulations. EPFL SuperComputing Review 11:23–29Google Scholar
  28. 28.
    Shi Gen-Hua, (1988) Discontinuous deformation analysis- a new numerical model for the statics and dynamics of block systems. PhD Thesis, University of California, BerkeleyGoogle Scholar
  29. 29.
    Shi Gen-Hua, Goodman R.E. (1988) Discontinuous deformation analysis- a new method for computing stress, strain and sliding of block systems. In: Cundall P.A. et al. (Eds.) Key Questions in Rock Mechanics, Balkema, Rotterdam, 381–383Google Scholar
  30. 30.
    Walton O.R. (1980) Particle dynamics modeling of geological materials, Rep. UCRL-52915, Lawrence Livermore National LaboratoryGoogle Scholar
  31. 31.
    Williams J.R., Hocking G., Mustoe G.G.W. (1985) The theoretical basis of the discrete element method. In: NUMETA ’85, Balkema, RotterdamGoogle Scholar
  32. 32.
    Williams J.R., Mustoe G.G.W. (1987) Modal methods for the analysis of discrete systems, Comp. Geotechnics 4:1–19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Joseph Morris
    • 1
  • Lew Glenn
    • 1
  • Stephen Blair
    • 1
  1. 1.Geophysics and Global Security DivisionLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations