Do Finite Volume Methods Need a Mesh?

  • Michael Junk
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 26)


In this article, finite volume discretizations of hyperbolic conservation laws are considered, where the usual triangulation is replaced by a partition of unity on the computational domain. In some sense, the finite volumes in this approach are not disjoint but are overlapping with their neighbors. This property can be useful in problems with time dependent geometries: while the movement of grid nodes can have unpleasant effects on the grid topology, the meshfree partition of unity approach is more flexible since the finite volumes can arbitrarily move on top of each other. In the presented approach, the algorithms of classical and meshfree finite volume method are identical - only the geometrical coefficients (cell volumes, cell surfaces, cell normal vectors) have to be defined differently. We will discuss two such definitions which satisfy certain stability conditions.


Partition Function Finite Volume Entropy Solution Flux Function Finite Volume Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chainais-Hillairet, C: Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. M2AN 33 (1999) 129–156.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Cockourn, B., Coquel, F., Lefloch, P.: An error estimate for finite volume methods for multidimensional conservation laws. Math. Comput. 63 (1994) 77–103CrossRefGoogle Scholar
  3. 3.
    Eymard, R., Gallouët, T.: Convergence d’un schéma de type éléments finis -volumes finis pour un système formé d’une équation elliptique et d’une équation hyperbolique. M2AN, Modélisation mathématique et analyse numérique, 27 (1993) 843–862zbMATHGoogle Scholar
  4. 4.
    Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences 118, Springer (1996)Google Scholar
  5. 5.
    Hietel, D., Steiner, K., Struckmeier, J.: A finite-volume particle method for compressible flows. Math. Models Methods Appl. Sci. 10 (2000) 1363–1382MathSciNetCrossRefGoogle Scholar
  6. 6.
    Junk, M., Struckmeier, J.: Consistency analysis for mesh-free methods for conservation laws. AG Technomathematik, Universität Kaiserslautern, preprint 226 (2000)Google Scholar
  7. 7.
    Keck, R.: PhD Thesis, Universität Kaiserslautern, in preparation.Google Scholar
  8. 8.
    Kröner, D.: Numerical Schemes for Conservation Laws. Wiley Teubner (1997)Google Scholar
  9. 9.
    Shepard, D.: A two-dimensional interpolation function for irregularly spaced points. Proceedings of A.C.M National Conference (1968) 517-524Google Scholar
  10. 10.
    Teleaga, D.: Numerical studies of a finite-volume particle method for conservation laws. Master thesis, Universität Kaiserslautern, 2000.Google Scholar
  11. 11.
    Vila, J.-P.: Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes. M2AN 28 (1994) 267-295MathSciNetzbMATHGoogle Scholar
  12. 12.
    Vovelle, J.: Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math., Online First Publications (2001)Google Scholar
  13. 13.
    Yang, Z.: Efficient Calculation of Geometric Parameters in the Finite Volume Particle Method. Master thesis, Universität Kaiserslautern, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michael Junk
    • 1
  1. 1.Fachbereich MathematikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations