Advertisement

Structure Calculation of Protein Segments Connecting Domains with Defined Secondary Structure: A Simulated Annealing Monte Carlo Combined with Biased Scaled Collective Variables Technique

  • Sergio A. Hassan
  • Ernest L. Mehler
  • Harel Weinstein
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 24)

Abstract

A method for modeling segments of proteins that connect regions with defined secondary structure is illustrated with a study of long segments (8–13 amino acids) that include parts of defined secondary structure motifs. Loop structure calculation can be considered a particular case of this more challenging problem. The new algorithm first finds conformations representative of the segment structure tethered to the protein at one terminus only, and subsequently drives the free end of the segment towards its attachment point using a reversed harmonic constrained simulated annealing scheme. An adjustable force constant drives the free terminal towards the attachment point, using the Monte Carlo (MC) technique of scaled collective variables (SCV). Each segment is initially placed in an extended conformation with the N-terminus covalently bound to the protein, and MC simulated annealing is carried out to find the preferred conformations of the segment. The resulting families of conformations prepare the segment for attachment of the C-terminus. In the second stage a hierarchical protocol drives the segment’s C-terminus towards its final position in the protein. The free C-terminus is attached to a dummy residue, identical to the target residue where the segment will be connected. Successive MC simulations are carried out using the SCV method with increasingly larger values of the harmonic force constant that slowly stabilize the free energy surface to ensure the correct orientation of the segment region with the rest of the system. The performance of the method was evaluated for eight segments in the a-subunit of the G protein transducin for which a high-resolution X-ray crystal structure (2.0 Å) is available. The calculation was performed using the all-atom representation and the CHARMM force field with the electrostatic effects of the solvent described implicitly by the new SCP general continuum model. The segments that are most exposed to solvent are found to be represented best with this method.

Keywords

Simulated Annealing Monte Carlo Free Energy Surface Structure Calculation Conformational Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dobson, C. M., A. Sali, and M. Karplus. Protein Folding: A perspective from Theory and Experiment. Angewandte Chem. Int. Ed. 37:868–893 (1998).CrossRefGoogle Scholar
  2. 2.
    Sali, A., E. Shakhnovich, and M. Karplus. How does a Protein Fold? Nature 369:248–251 (1994).PubMedCrossRefGoogle Scholar
  3. 3.
    Zhou, Y., and M. Karplus. Folding Thermodynamics of a Model Three-Helix-Bundle Protein. Proc. Natl. Acad. Sei. USA 94:14429–14432 (1997).CrossRefGoogle Scholar
  4. 4.
    Lazaridis, T., and M. Karplus. New View of Protein Folding Reconciled with the Old Through Multiple Unfolding Simulations. Science 278:1928–1931 (1997).PubMedCrossRefGoogle Scholar
  5. 5.
    Mohanty, D., R. Elber, D. Thirumalai, D. Beglov, and B. Roux. Kinetics of Peptide Folding: Computer Simulations of DYPFDV and Peptide Variants in Water. J. Mol. Biol. 272:423–442 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    Schaefer, M., C. Bartels, and M. Karplus. Solution Conformations and Thermodynamics of Structured peptides: Molecular Dynamics Simulation with an Implicit Solvation Model. J. Mol. Biol. 284:835–848 (1998).PubMedCrossRefGoogle Scholar
  7. 7.
    Hassan, S. A., F. Guarnieri, and E. L. Mehler. A new approach for folding peptides: conformational memories with a new implicit solvent model. Biophys. J. 78:A1978 (2000).Google Scholar
  8. 8.
    Hassan, S. A., F. Guarnieri, and E. Mehler. A Screened Coulomb Potential Based Implicit Solvent Model: Parametrization and Prediction of Structures of Small Peptides. Biophys. J. 76:A198 (1999).CrossRefGoogle Scholar
  9. 9.
    Hassan, S.A., and E. L. Mehler. A General Screening Coulomb Potential based Implicit Solvent Model: Calculation of Secondary Structure of Small Peptides. Int. J. Quant. Chem. 83:193 (2001).CrossRefGoogle Scholar
  10. 10.
    Godzik, A., A. Kolinski, and J. Skolnick. Lattice Representation of Globular Proteins: How Good are They? J. Comp. Chem. 14:1194–1202 (1993).CrossRefGoogle Scholar
  11. 11.
    Sikorski, A., A. Kolinski, and J. Skolnick. Computer Simulations of De Novo Designed Helical Proteins. Biophysical J. 75:92–105 (1998).CrossRefGoogle Scholar
  12. 12.
    Lu, Y., and J. S. Valentine. Engineering Metal-binding Sites in Proteins. Curr. Opin. Struct Biol 7:495–500 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    Wu, S. J., and D. H. Dean. Functional Significance of Loops in the Receptor Binding Domain of Bacilus Thuringiensis CryIIIA δ-endotoxin. J. Mol. Biol. 255:628–640 (1996).PubMedCrossRefGoogle Scholar
  14. 14.
    Jones, S., P. van Heyningen, H. M. Berman, and J. M. Thornton. Protein-DNA Interactions: A Structural Analysis. J. Mol. Biol. 287:877–896 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    Perona, J. J., and C. S. Craik. Structural Basis of Substrate Specificity. Protein Sei. 4:337–360 (1995).CrossRefGoogle Scholar
  16. 16.
    Meirovitch, H., and T. F. Hendrickson. Backbone Entropy of Loops as a Measure of Their Flexibility: Application to a Ras Protein Simulated by Molecular Dynamics. PROTEINS: Structure, Function, and Genetics 29:127–140 (1997).CrossRefGoogle Scholar
  17. 17.
    Getzoff, E. D., H. M. Geysen, S. J. Rodda, H. Alexander, J. A. Tainer, and R. A. Lerner. Mechanisms of Antibody Binding to a Protein. Science 235:1191–1196 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    Bockaert, J., and J. P. Pin. Molecular tinkering of G protein-coupled receptors: an evolutionary success. Embo J 18:1723–1729 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    Visiers, I., J. A. Ballesteros, and H. Weinstein. Computational methods for the construction and analysis of three dimensional representations of GPCR structures and mechanisms, in Methods Enzymol (I. Iyengar and J. Hildebrandt, eds.). Academic Press, New York (2001).Google Scholar
  20. 20.
    Go, N., and H. A. Scheraga. Ring Closure and Local Conformational Deformations of Chain Molecules. Macromolecules 3:178–187 (1970).CrossRefGoogle Scholar
  21. 21.
    Bruccoleri, R. E., and M. Karplus. Prediction of the Folding of Short Polypeptide Segments by Uniform Conformaional Sampling. Biopolymers 26:137–168 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    Wedemeyer, W. J., and H. A. Scheraga. Exact Analytical Loop Closure in Proteins Using Polynomial Equations. J. Comp. Chem. 20:819–844 (1999).CrossRefGoogle Scholar
  23. 23.
    Fiser, A., R. Kinh Gian Do, and A. Sali. Modeling of Loops in Protein Structures. Protein Science 9:1753–1773 (2000).PubMedCrossRefGoogle Scholar
  24. 24.
    Li, W., Z. Liu, and L. Lai. Protein Loops on Structurally Similar Scaffolds: Database and Conformational Analysis. Biopolymers 49:481–495 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    Chotia, C, A. M. Lesk, M. Levitt, A. G. Amit, R. A. Mariuzza, S. E. V. Phillips, and R. J. Poljak. The Predicted Structure of Immunoglobulin d1.3 and its Comparison with the Crystal Structure. Science 233:755–758 (1986).CrossRefGoogle Scholar
  26. 26.
    van Vlijmen, H. W. T., and M. Karplus. PDB-based Protein Loop Prediction: Prameters for Selection and Methods for Optimization. J. Mol. Biol. 267:975–1001 (1997).PubMedCrossRefGoogle Scholar
  27. 27.
    Higo, J., V. Collura, and J. Gamier. Development of an Extended Simulated Annealing Method: Application to the Modeling of Complementary Determining Regions of Immunoglobulins. Biopolymers 32:33–43 (1992).PubMedCrossRefGoogle Scholar
  28. 28.
    Carlacci, L., and S. W. Englander. Loop Problem in Proteins: Developments on Monte Carlo Simulated Annealing Approach. J. Comp. Chem. 17:1002–1012 (1996).CrossRefGoogle Scholar
  29. 29.
    Baysal, C, and H. Meirovitch. Efficiency of Simulated Annealing for Peptides with Increasing Geometrical Restrictions. J. Comp. Chem. 20:1659–1670 (1999).CrossRefGoogle Scholar
  30. 30.
    Nakajima, N., J. Higo, A. Kidera, and e. al. Free Energy Landscapes of Ppetides by Enhanced Conformational Sampling. J. Mol. Biol. 296:197–216 (2000).PubMedCrossRefGoogle Scholar
  31. 31.
    Kidera, A. Enhanced Conformational Sampling in Monte Carlo Simulations of Proteins: Application to a Constrained Peptide. Proc. Natl. Acad. Sei. USA 92:9886–9889 (1995). 3CrossRefGoogle Scholar
  32. 32.
    Still, W. C., A. Tempczyk, R. C. Hawley, and T. Hendrickson. Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem. Soc. 112:6127–6129 (1990).CrossRefGoogle Scholar
  33. 33.
    Hassan, S. A., F. Guarnieri, and E. L. Mehler. A General Treatment of Solent Effects Based on Screened Coulomb potentials. J. Phys. Chem. 104:6478 (2000).CrossRefGoogle Scholar
  34. 34.
    Vasmatzis, L., R. Brower, and C. Delisi. Biopolymers 34:1669–1680 (1994).PubMedCrossRefGoogle Scholar
  35. 35.
    Zheng, Q., R. Rosenfeld, C. Delisi, and D. J. Kyle. Protein Sei. 3:493–506 (1994).CrossRefGoogle Scholar
  36. 36.
    Rapp, C. S., and R. A. Friesner. Prediction of Loop Geometries Using a Generalized Born Model of Soilvation Effects. PROTEINS: Structure, Function, and Genetics 35:173–183 (1999).CrossRefGoogle Scholar
  37. 37.
    Hassan, S. A., F. Guarnieri, and E. L. Mehler. Characterization of Hydrogen Bonding in a Continuum Solbent Model. J. Phys. Chem. 104:6490 (2000).CrossRefGoogle Scholar
  38. 38.
    Ma, B., and R. Nussinov. Explicit and Implicit Water Simulations of a β-Hairpin Peptide. PROTEINS: Structure, Function, and Genetics 37:73–87 (1999).CrossRefGoogle Scholar
  39. 39.
    Martin, A., M. MacArthur, and J. Thornton. Assesment of Comparative Modeling in CASP2. Proteins Suppl. 1:14–28 (1997).CrossRefGoogle Scholar
  40. 40.
    Rufino, S. D., L. E. Donate, C. L. H. J., and T. L. Blundell. Predicting the Conformational Class of Short and Medium Size Loops Connecting Regular Secondary Structures: Application to Comparative Modeling. J. Mol. Biol. 267:352–367 (1997).PubMedCrossRefGoogle Scholar
  41. 41.
    Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comp. Chem. 4:187–217 (1983).CrossRefGoogle Scholar
  42. 42.
    MacKerell, A. D. J., D. Bashford, M. Bellott, R. J. Dunbrack, J. Evanseck, M. Field, S. Fischer, J. Gao, H. Guo, S. Ha, and e. al. All-atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 102:3586–3616 (1998).CrossRefGoogle Scholar
  43. 43.
    Hansmann, U. H. E., and Y. Okamoto. New Monte Carlo Algorithms for Protein Folding. Curr. Opin. Struct. Biol. 9:177–183 (1999).PubMedCrossRefGoogle Scholar
  44. 44.
    Noguti, T., and N. Go. Efficient Monte Carlo Method for Simulation of Fluctuating Conformations of Native Proteins. Biopolymers 24:527–546 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    Guarnieri, F., and H. Weinstein. Conformational Memories and the Exploration of Biologically Relevant Peptide Conformations: An Illustration for the Gonadotropin-Releasing Hormone. J. Am. Chem. Soc. 118:5580–5589 (1996).CrossRefGoogle Scholar
  46. 46.
    Kirkpatrick, S., C. Gelatt, D., Jr., and M. P. Vecchi. Optimization by Simulated Annealing. Science 220:671–680 (1983).PubMedCrossRefGoogle Scholar
  47. 47.
    Pellegrini, M., N. Gronbech-Jensen, and S. Doniach. Simulations of the Thermodynamic Properties of Short Polyalanine Peptide Using Potentials of Mean Force. Physica A 239:244–254 (1997).CrossRefGoogle Scholar
  48. 48.
    Kinoshita, M., Y. Okamoto, and F. Hirata. First-principle Determination of Peptide Peptide Conformations in Solvents: Combination of Monte Carlo Simulated Annealing and RISM Theory. J. Am. Chem. Soc. 120:1855–1863 (1998).CrossRefGoogle Scholar
  49. 49.
    Okamoto, Y., M. Masuya, M. Nabeshima, and T. Nakazawa. β-sheet Formation in BPTI(16–36) by Monte Carlo Simulated Annealing. Chem. Phys. Lett. 299:17–24 (1999).CrossRefGoogle Scholar
  50. 50.
    Guarnieri, F., and M. Mezei. Simulated Annealing of Chemical Potential: A General Procedure for Locating Bound Waters. Application to the Study of the Differential Hydration Propensities of the Major and Minor Grooves of DNA. J. Am. Chem. Soc. 118:8493–8494 (1996).CrossRefGoogle Scholar
  51. 51.
    Mehler, E. L., and E. Eichele. Electrostatic Effects in Water-Accessible Regions of Proteins. Biochemistry 23:3887–3891 (1984).CrossRefGoogle Scholar
  52. 52.
    Gabb, H. A., C. Prevost, G. Bertucat, C. H. Robert, and R. Lavery. Collective-Variable Monte Carlo Simulation of DNA. J. Comp. Chem. 18:2001–2011 (1997).CrossRefGoogle Scholar
  53. 53.
    Hurley, J. B. J. Bioenerg. Biomem. 24:219–226 (1992).CrossRefGoogle Scholar
  54. 54.
    Pfister, C., and e. al. Cell. Sig. 5:235–241 (1993).CrossRefGoogle Scholar
  55. 55.
    Lodish, H., A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. E. Darnell. Molecular Cell Biology, New York (2000).Google Scholar
  56. 56.
    Stryer, L. Biochemistry. Freeman, New York (1995).Google Scholar
  57. 57.
    Lambright, D. G., J. Sondek, A. Bohm, N. P. Skiba, H. E. Hamm, and P. B. Sigler. The 2.0 A Crystal Structure of a Heterotrimeric G Protein. Nature 379:311–319 (1996).PubMedCrossRefGoogle Scholar
  58. 58.
    Lambright, D. G., J. P. Noel, H. E. Hamm, and P. B. Siegler. Nature 369:621–628 (1994).PubMedCrossRefGoogle Scholar
  59. 59.
    Sondek, J., A. Böhm, D. G. Lambright, H. E. Hamm, and P. B. Siegler. Nature 379:369–374 (1996).PubMedCrossRefGoogle Scholar
  60. 60.
    Sullivan, K. A., and e. al. Nature 330: 778–760 (1987).CrossRefGoogle Scholar
  61. 61.
    Simonds, W. F., P. K. Goldsmith, J. Codina, C. G. Unson, and A. M. Spiegel. Proc. Natl. Acad. Sei. USA 86:7809–7813 (1989).CrossRefGoogle Scholar
  62. 62.
    Noel, J. P., H. E. Hamm, and P. B. Siegler. Nature 366:654–663 (1993).PubMedCrossRefGoogle Scholar
  63. 63.
    Guarnieri, F., and S. R. Wilson. Conformational Memories and a Simulated Annealing Program that Learns: Application to LTB4. J. Comp. Chem. 16:648–653 (1995).CrossRefGoogle Scholar
  64. 64.
    Böttcher, C. J. F. Theory of Dielectric Polarization. Elseiver, Amsterdam (1993)Google Scholar
  65. 65.
    Jackson, J. D. Classical Electrodynamics. Wiley (1975).Google Scholar
  66. 66.
    Born, M. Volumen und Hydrationswärme der Ionen. Z. Phys. 1:45–48 (1920).CrossRefGoogle Scholar
  67. 67.
    Hoijtink, G. J., E. de Boer, P. H. van der Meer, and W. P. Weijland. Reduction Potentials of Various Aromatic Hydrocarbons and their Univalent Anions. Rec. Trav. Chim. 75:487–503 (1956).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Sergio A. Hassan
    • 1
  • Ernest L. Mehler
    • 1
  • Harel Weinstein
    • 1
  1. 1.Department of Physiology and BiophysicsMount Sinai School of MedicineNew YorkUSA

Personalised recommendations