On the Potential of Monte Carlo Methods for Simulating Macromolecular Assemblies

  • Mihaly Mezei
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 24)


A wide variety of Monte Carlo techniques are described to argue that the methodology has a large untapped potential to solve sampling problems for complex systems.


Monte Carlo Method Torsion Angle Configuration Space Acceptance Rate Generalize Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Clarendon Press, Oxford (1986).Google Scholar
  2. 2.
    D. Prenkel and B. Smit, Understanding Molecular Simulations: from Algorithms to Applications, Academic Press, San Diego (1996).Google Scholar
  3. 3.
    N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculation by fast computing machines, J. Chem. Phys., 21, 1087–1092 (1953).CrossRefGoogle Scholar
  4. 4.
    A. Rahman, Correlations in the motion of atoms in liquid argon, Phys. Rev., 136, A405–411 (1964).CrossRefGoogle Scholar
  5. 5.
    F. H. Stillinger and C. W. David, Polarization model for water and its ionic dissociation products, J. Chem. Phys., 69, 1473–1484 (1978).CrossRefGoogle Scholar
  6. 6.
    P. Jedlovszky and J. Richardi, Comparison of different water models from ambient to supercritcal conditions: A Monte Carlo simulation and molecular Orstein-Zernike study, J. Chem. Phys., 110, 8019–8031 (1999).CrossRefGoogle Scholar
  7. 7.
    T. Darden, D. York, L. Pedersen, Particle mesh Ewald: An N · log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089–10092 (1993).CrossRefGoogle Scholar
  8. 8.
    R. Sperb, An alternative to Ewald sums, part 2: The Coulomb potential in a periodic system, Molecular Simulation, 22, 199–212 (1999).CrossRefGoogle Scholar
  9. 9.
    W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97–109 (1970).CrossRefGoogle Scholar
  10. 10.
    A. A. Barker, Monte Carlo calculations of the radial distribution functions for a proton-electron plasma, Austral. J. Phys., 18, 119–133 (1965).CrossRefGoogle Scholar
  11. 11.
    P. H. Peskun, Optimum Monte Carlo sampling using Markov chains, Biometrika, 60, 607–612 (1973).CrossRefGoogle Scholar
  12. 12.
    J. S. Liu, F. Liang and W. H. Wong, The use of multiple-try method and local optimization in Metropolis sampling, J. Amer. Statist. Assoc., 95, 121–134 (2000).CrossRefGoogle Scholar
  13. 13.
    G. Patey, and J. P. Valleau, Monte Carlo method for obtaining the interionic potential of mean force in ionic solution, J. Chem. Phys., 82, 2334 (1975).CrossRefGoogle Scholar
  14. 14.
    G. M. Torrie, and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling, J. Comp. Phys., 23, 187 (1977).CrossRefGoogle Scholar
  15. 15.
    D. Levesque, J. J. Weis, and J. P. Hansen, Recent developments in the simulation of classical fluids, in “Applications of the Monte Carlo method in statistical physics”, K. Binder, ed., Springer, Berlin, Heidelberg (1984).Google Scholar
  16. 16.
    Advances in Chemical Physics, 105, “Monte Carlo methods in chemical physics” Wiley, New York, (1999).Google Scholar
  17. 17.
    MCMC Preprint server: Scholar
  18. 18.
    Molecular Monte Carlo home page: http:/ / Scholar
  19. 19.
    M. Mezei, On the selection of the particle to be perturbed in the Monte Carlo method, J. Comp. Phys., 39, 128–136 (1981).CrossRefGoogle Scholar
  20. 20.
    J. C. Owicki, Optimization of sampling algorithms in Monte Carlo calculations of fluids, in “Computer modeling of matter”, P. G. Lykos, ed., American Chemical Society, Washington, D. C. (1978).Google Scholar
  21. 21.
    H. Resat, T. J. Marrone, and J. A. McCammon, Enzyme-inhibitor association thermodynamics: Explicit and continuum solvent studies, Biophys. J., 74, 2786–2801 (1998)CrossRefGoogle Scholar
  22. 22.
    P. Jedlovszky, M. Mezei, Grand canonical ensemble Monte Carlo simulation of a lipid bilayer using extension biased rotations, J. Chem. Phys., 111, 10770–10773 (2000).CrossRefGoogle Scholar
  23. 23.
    S. Goldman, A simple way to help speed up Monte Carlo convergence rates: Energy-scaled displacement Monte Carlo, J. Chem. Phys., 79, 3938–3947 (1983).CrossRefGoogle Scholar
  24. 24.
    M. Mezei, K. A. Bencsâth, S. Goldman, and S. Singh, The detailed balance energy-scaled displacement Monte Carlo algorithm, Molecular Simulation, 1, 87–93 (1987).CrossRefGoogle Scholar
  25. 25.
    J. Cao and B. J. Berne, Monte Carlo methods for accelerating barrier crossing: Anti-force-bias and variable step algorithms, J. Chem. Phys., 92, 1980–1985 (1990).CrossRefGoogle Scholar
  26. 26.
    H. Gordon, and S. Goldman, Simulations on the Primitive Electrolyte Environment of a High Charge-Density Polyelectrolyte. A Sampling Problem and its Solution, Molecular Simulation, 3, 213–225 (1989).CrossRefGoogle Scholar
  27. 27.
    R. M. Rao, CS. Pangali, and B. J. Berne, On the force bias Monte Carlo simulation of water: Methodology, optimization and comparison with molecular dynamics, Molec. Phys., 37, 1779–1798 (1979).Google Scholar
  28. 28.
    M. Mezei, S. Swaminathan, D. L. Beveridge, Convergence characteristics of the conventional Metropolis Monte Carlo method on liquid water, J. Chem. Phys., 71, 3366–3373 (1979).CrossRefGoogle Scholar
  29. 29.
    M. Mezei, Virial-bias Monte Carlo methods: Efficient sampling in the (T, P, N) ensemble, Molec. Phys., 48, 1075–1082 (1983).CrossRefGoogle Scholar
  30. 30.
    M. Mezei, Distance-scaled force biased Monte Carlo simulation for solutions containing a strongly interacting solute, Molecular Simulation, 5, 405–408 (1991).CrossRefGoogle Scholar
  31. 31.
    B. J. Hardy, and R. W. Pastor, Conformational sampling of hydrocarbon and lipid chains in an orienting potential, J. Comp. Chem., 15, 208–226 (1994).CrossRefGoogle Scholar
  32. 32.
    F. Guarnieri and H. Weinstein, Conformational memories and the exploration of biologically relevant peptide conformations: An illustration for the gonadotropin-releasing hormones, J. Am. Chem. Soc, 118, 5580–5589 (1996).CrossRefGoogle Scholar
  33. 33.
    G. Némethy, K. D. Gibson, K. A. Palmer, C. N. Yoon, G. Paterlini, A. Zagari, S. Rumsey, and H. A. Scheraga, Energy parameter in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides, J. Phys. Chem., 96, 6472–6484 (1992).CrossRefGoogle Scholar
  34. 34.
    W. L. Jorgensen, and J. Tirado-Rives, Monte Carlo vs molecular dynamics for conformational sampling, J. Phys. Chem., 100, 14508–14513 (1996).CrossRefGoogle Scholar
  35. 35.
    T. Noguti and N. Go, Efficient Monte Carlo method for simulation of fluctuating conformations of native proteins, Biopolymers, 24, 527–546 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    H. A. Gabb, C. Prévost, G. Bertucat, C. H. Robert, R. Lavery, Collective-variable Monte Carlo simulation of DNA, J. Comp. Chem., 18, 2001–2011 (1997).CrossRefGoogle Scholar
  37. 37.
    N. Go, and H. A. Scheraga, Ring closure and local conformational deformation of chain molecules, Macromolecules, 3, 178–187 (1970).CrossRefGoogle Scholar
  38. 38.
    A. Kolinski, J. Skolnick, Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme, Proteins, 18, 338–352 (1994).PubMedCrossRefGoogle Scholar
  39. 39.
    L. R. Dodd, T. D. Boone, and D. N. Theodoru, A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses, Molec. Phys., 78, 961–996 (1993).CrossRefGoogle Scholar
  40. 40.
    D. Hoffman, and E. -W. Knapp, Polypeptide folding with off-lattice Monte Carlo dynamics: The method, Eur. Biophys. J., 24, 387–403 (1996).CrossRefGoogle Scholar
  41. 41.
    M. Mezei, submitted.Google Scholar
  42. 42.
    M. N. Rosenbluth, and A. V. Rosenbluth, Monte Carlo calculation of the average extension of a molecular chain, J. Chem. Phys., 23, 356–359 (1955).CrossRefGoogle Scholar
  43. 43.
    S. Livne, and H. Meirovitch, Computer simulation of long polymers adsorbed on a surface. I. Correction to scaling in an ideal chain. J. Chem. Phys., 88, 4498–4506 (1988).CrossRefGoogle Scholar
  44. 44.
    J. I. Siepmann, and D. Prenkel, Configurational bias Monte Carlo: A new sampling scheme for flexible chains, Molec. Phys., 75, 59–76 (1992).CrossRefGoogle Scholar
  45. 45.
    J. J. de Pablo, M. Laso, and U. W. Suter, Simulation of polyethylene above and below the melting point, J. Chem. Phys., 96, 2395–2403 (1992).CrossRefGoogle Scholar
  46. 46.
    H. L. Scott, E. Jacobsson, and S. Subramaniam, Simulations of lipid membranes with atomic resolution, Comput. Phys. 12, 328–334 (1998).CrossRefGoogle Scholar
  47. 47.
    F. T. Wall and J. J. Erpenbeck, New method for the statistical computation of polymer dimensions. Statistical computation of radii of gyration and mean internal dimensions of polymer molecules. J. Chem. Phys., 30, 634–637 (1959).CrossRefGoogle Scholar
  48. 48.
    P. Grassberger, Recursive sampling of random walks: Self-avoiding walks in disordered media, J. Phys. A, 26, 1023–1036 (1993).CrossRefGoogle Scholar
  49. 49.
    R. Hegger and P. Grassberger, Chain polymers near adsorbing surface, J. Phys. A, 27, 4069–4081 (1994).CrossRefGoogle Scholar
  50. 50.
    P. Grassberger, Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000, Phys. Rev. E, 56, 3682–3693 (1997).CrossRefGoogle Scholar
  51. 51.
    F. T. Wall and F. Mandel, Macromolecular dimensions obtained by an efficient Monte carlo method without sample attrition, J. Chem. Phys., 63, 4592–4595 (1975).CrossRefGoogle Scholar
  52. 52.
    I. Webman, J. L. Lebowitz and M. H. Kalos, MOnte Carlo studies of a polymer between plates, crossover between dimensionality, J. Phys. (Paris), 41, 579–583 (1980).CrossRefGoogle Scholar
  53. 53.
    M. Bishop, D. Ceperly, H. L. Frisch, and M. H. Kalos, Investigations of static properties of model bulk polymer fluids, J. Chem. Phys., 72, 3228–3235 (1980).CrossRefGoogle Scholar
  54. 54.
    D. J. Adams, Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid, Molec. Phys., 29, 307–311 (1975).CrossRefGoogle Scholar
  55. 55.
    M. Mezei, A cavity-biased (T,V,μ) Monte Carlo method for the computer simulation of fluids, Molec. Phys., 40, 901–906 (1980).CrossRefGoogle Scholar
  56. 56.
    M. Mezei, Grand-canonical ensemble Monte Carlo simulation of dense fluids: Lennard-Jones, soft spheres and water, Molec. Phys., 61, 565–582 (1987); Erratum, 67, 1207–1208 (1989).CrossRefGoogle Scholar
  57. 57.
    M. Mezei, and D. L. Beveridge, Free energy simulations, Ann. Acad. Sci N. Y., 482, 1–23 (1986).CrossRefGoogle Scholar
  58. 58.
    D. P. Tieleman, and H. J. C. Berendsen, A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleyl phospatidycholine bilayer. Biophys. J., 74, 2786–2801 (1998).PubMedCrossRefGoogle Scholar
  59. 59.
    D. D. Franz, D. L. Freeman and J. D. Doll, reducing quasi-ergodic behavior in Monte Carlo simulations by J-walking: Application to atomic clusters, J. Chem. Phys., 93, 2769–2784 (1979).CrossRefGoogle Scholar
  60. 60.
    S. Kirkpatrick, CD. Gelatt Jr., and M. P. Vecchi, Optimization by simulated annealing Science, 220, 671–680 (1983).PubMedCrossRefGoogle Scholar
  61. 61.
    Q. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov and P. N. Vorontsov-Velyaminov, New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles, J. Chem. Phys., 96, 1776–1783 (1992).CrossRefGoogle Scholar
  62. 62.
    E. Marinari and G. Parisi, Simulated tempering: A new Monte Carlo scheme. Europhysics Letters, 19, 451–455, 1992CrossRefGoogle Scholar
  63. 63.
    B. A. Berg and T. Neuhaus, Multicanonical ensemble — a new approach to simulate 1st order phase transitions, Phys. Rev. Lett., 68, 9–12 (1992).PubMedCrossRefGoogle Scholar
  64. 64.
    B. Hesselbo and R. B. Stinchcombe, Monte Carlo simulation and global optimization without parameters Phys. Rev. Lett. 74, 2515–2155 (1995).CrossRefGoogle Scholar
  65. 65.
    U. H. E. Hansmann and Y. Okamoto, Monte Carlo simulations in generalized ensemble: Multicanonical algorithm versus simulated tempering, Phys. Rev. E, 54, 5863–5865 (1996)CrossRefGoogle Scholar
  66. 66.
    U. H. E. Hansmann and Y. Okamoto, Numerical comparisons of three recently proposed algorithms in the protein folding problem, J. Comp. Chem., 18, 920–933 (1997).CrossRefGoogle Scholar
  67. 67.
    G. M. Paine, and H. A. Scheraga, Prediction of the native conformation of a polypeptide by a statistical-mechanical procedure. I. Backbone structure of enkephalin, Biopolymers, 24, 1391–1436 (1985).PubMedCrossRefGoogle Scholar
  68. 68.
    M. Mezei, Adaptive umbrella sampling: Self-consistent determination of the non-Boltzmann bias, J. Comp. Phys., 68, 237–248 (1987).CrossRefGoogle Scholar
  69. 69.
    C. Bartels and M. Karplus, Multidimensional Adaptive Umbrella Sampling: Applications to main chain and side chain peptide conformations, J. Comp. Chem., 18, 1450–1462 (1997).CrossRefGoogle Scholar
  70. 70.
    I. Andricioaei anf J. E. Straub, Generalized simulated annealing algorithms using Tsallis statistics: Application to conformational optimization of a tetrapeptide, Phys. Rev. E, 53, R3055–R3058 (1996).CrossRefGoogle Scholar
  71. 71.
    D. A. Stariolo and C. Tsallis, Annual Reviews of Computational Physics II, D. Staufer, ed., World Scientific, Singapore  (1995) p 343.Google Scholar
  72. 72.
    I. Andricioaei anf J. E. Straub, On Monte Carlo and molecular dynamics methods inspired by Tsallis statisistics: Methodology, optimization, and application to atomic clusters, J. Chem. Phys., 107, 9117–9124 (1997).CrossRefGoogle Scholar
  73. 73.
    Y. Pak and S. Wang, Folding of a 16-residue helical peptide using molecular dynamics simulation with Tsallis effective potential, J. Chem. Phys., 111, 4359–4361 (1999).CrossRefGoogle Scholar
  74. 74.
    W. H. Wong and F. Liang, Dynamic weighing Monte Carlo and optimization, Proc. Natl. Acad. Sci. USA, 94, 14220–14224 (1997).PubMedCrossRefGoogle Scholar
  75. 75.
    R. H. Kincaid, and H. A. Scheraga, Acceleration of convergence in Monte Carlo simulations of aqueous solutions using the Metropolis algorithm. Hydrophobic hydration of methane, J. Comp. Chem., 3, 525–547 (1982).CrossRefGoogle Scholar
  76. 76.
    J. Kolafa, On optimization of Monte Carlo simulations, Molec. Phys., 63, 559–5792 (1988).CrossRefGoogle Scholar
  77. 77.
    D. Bouzida, S. Kumar, and R. H. Swendsen, Efficient Monte Carlo methods for the computer simulation of biological molecules, Phys. Rev. A., 45, 8894–8901 (1992).PubMedCrossRefGoogle Scholar
  78. 78.
    W. W. Wood, Monte Carlo studies of simple liquid models, in “Physics of simple liquids.” H. N. V Temperly, F. S. Rowlinson, and G. S. Rushbrooke, Eds. North-Holland (1968).Google Scholar
  79. 79.
    J. Kolafa, Autocorrelations and subseries averages in Monte Carlo simulations, Molec. Phys., 59, 1035–1042 (1986).CrossRefGoogle Scholar
  80. 80.
    B. M. Forrest, and U. W. Suter, Hybrid Monte Carlo simulations of dense polymer systems J. Chem. Phys., 101, 2616–2629 (1994).CrossRefGoogle Scholar
  81. 81.
    F. Guarnieri, Theory and algorithms for mixed Monte Carlo - stochastic dynamics simulations, J. Math. Chem., 18, 25–35 (1995).CrossRefGoogle Scholar
  82. 82.
    S.-W. Chiu, M. Clark, E. Jakobsson, S. Subramaniam and H. L. Scott, Application of a Combined Monte Carlo and Molecular Dynamics Method to the Simulation of a Dipalmitoyl Phosphatidylcholine Lipid Bilayer, J. Comp. Chem., 20, 1153–1164, (1999).CrossRefGoogle Scholar
  83. 83.
    M. Mezei, A Comment on debugging Monte Carlo programs, Information Quarterly, CCP5, Daresbury Lab., No 23, 33–37 (1986).Google Scholar
  84. 84.
    M. Mezei, MMC: Monte Carlo program for simulation of molecular assemblies. URL: Scholar
  85. 85.
    B. D. Butler, G. Ayton, O. G. Jepps, and D. J. Evans, Configurational temperature: Vérification of Monte Carlo simulatios, J. Chem. Phys., 109, 6519–6522 (1998).CrossRefGoogle Scholar
  86. 86.
    P. K. Mehrotra, M. Mezei, and D. L. Beveridge, Convergence Acceleration in Monte Carlo Computer Simulation on Water and Aqueous Solutions, J. Chem. Phys., 78, 3156–3166 (1983).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Mihaly Mezei
    • 1
  1. 1.Department of Physiology and Biophysics, Mount Sinai School of MedicineNYUNew YorkUSA

Personalised recommendations