Mathematics and Molecular Neurobiology

  • Nathan A. Baker
  • Kaihsu Tai
  • Richard Henchman
  • David Sept
  • Adrian Elcock
  • Michael Holst
  • J. Andrew McCammon
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 24)


Advances in mathematics and computer technology, together with advances in structural biology, are opening the way to detailed modeling of biology at the molecular and cellular levels. One objective of such studies is the development of a more complete understanding of biological systems, including the emergence of behavior at the cellular level from that at the molecular level. Another objective is the development of more sophisticated models for structure-aided discovery of new pharmaceuticals.


Actin Filament Posteriori Error Brownian Dynamics Correlation Vector Adaptive Refinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. McCammon, B.R. Gelin, and M. Karplus. Dynamics of folded proteins. Nature, 267:585–590, 1977.PubMedCrossRefGoogle Scholar
  2. 2.
    C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, New Jersey, 1971.Google Scholar
  3. 3.
    D.L. Ermak and J.A. McCammon. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys., 69:1352–1360, 1978.CrossRefGoogle Scholar
  4. 4.
    F.B. Sheinerman, R. Norel, and B. Honig. Electrostatic aspects of protein-protein interactions. Curr. Opin. Struc. Biol., 10:153–159, 2000.CrossRefGoogle Scholar
  5. 5.
    M.E. Davis and McCammon J.A. Solving the finite difference linearized poisson-boltzmann equation: A comparison of relaxation and conjugate gradient methods. J. Comp. Chem., 10:386–391, 1989.CrossRefGoogle Scholar
  6. 6.
    E.R. Kandel, J.H. Schwartz, and T.M. Jessell. Principles of neural science. Appleton & Lange, Norwalk, Connecticut, 1991.Google Scholar
  7. 7.
    Stanislaw T. Wlodek, Terry W. Clark, L. Ridgway Scott, and J. Andrew McCammon. Molecular dynamics of acetylcholinesterase dimer complexed with tacrine. J. Am. Chem. Soc, 119:9513–9522, 1997.CrossRefGoogle Scholar
  8. 8.
    Huan-Xiang Zhou, Stanislaw T. Wlodek, and J. Andrew McCammon. Conformation gating as a mechanism for enzyme specificity. Proc. Natl. Acad. Sci. USA, 95:9280–9283, 1998.PubMedCrossRefGoogle Scholar
  9. 9.
    M. K. Gilson, T. P. Straatsma, J. A. McCammon, D. R. Ripoll, C. H. Faerman, P. H. Axelsen, I. Silman, and J. L. Sussman. Open “back door” in a molecular dynamics simulation of acetylcholinesterase. Science, 263:1276–1278, 1994.PubMedCrossRefGoogle Scholar
  10. 10.
    Sylvia Tara, T. P. Straatsma, and J. Andrew McCammon. Mouse acetyl-cholinesterase unliganded and in complex with huperzine A: a comparison of molecular dynamics simulations. Biopolymers, 50:35–43, 1999.PubMedCrossRefGoogle Scholar
  11. 11.
    Kaihsu Tai, Tongye Shen, Ulf Börjesson, Marios Philippopoulos and J. Andrew McCammon. Analysis of a 10-ns molecular dynamics simulation of mouse acetylcholinesterase. Biophys. J., 81:715–724, 2001.PubMedCrossRefGoogle Scholar
  12. 12.
    Wendy D. Cornell, Piotr Cieplak, Christopher I. Bayly, Ian R. Gould, Kenneth M. Merz Jr., David M. Ferguson, David C. Spellmeyer, Thomas Fox, James W. Caldwell, and Peter A. Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc, 117:5179–5197, 1995.CrossRefGoogle Scholar
  13. 13.
    T. P. Straatsma, M. Philippopoulos, and J. A. McCammon. NWChem: Exploiting parallelism in molecular simulation. Comp. Phys. Commun., 128:377–385, 2000.CrossRefGoogle Scholar
  14. 14.
    J.A. McCammon and S.C. Harvey. Dynamics of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, 1987.CrossRefGoogle Scholar
  15. 15.
    Charles L. Brooks, III, Martin Karplus, and B. Montgomery Pettitt. Proteins: a theoretical perspective of dynamics, structure, and thermodynamics, volume LXXI of Wiley Series on Advances in Chemical Physics. Wiley-Interscience, New York, 1988.Google Scholar
  16. 16.
    M. Karplus and J.A. McCammon. The internal dynamics of globular proteins. CRC Crit. Revs. Biochem., 9:293–349, 1981.CrossRefGoogle Scholar
  17. 17.
    Y. Bourne, P. Taylor, and P. Marchot. Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell, 83:503-512, 1995.PubMedCrossRefGoogle Scholar
  18. 18.
    Angel E. Garcia. Large-amplitude nonlinear motions in proteins. Phys. Rev. Lett, 68:2696–2699, 1992.PubMedCrossRefGoogle Scholar
  19. 19.
    T. Y. Shen, Kaihsu Tai, and J. Andrew McCammon. Statistical analysis of the fractal gating motions of the enzyme acetylcholinesterase. Phys. Rev. E, 63:041902, 2001.Google Scholar
  20. 20.
    D. M. Quirin. Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev., 87:955-979, 1987.CrossRefGoogle Scholar
  21. 21.
    P. Nambi, A. Wierzbicki, and S.A. Allison. Intermolecular interaction between bovine pancreatic trypsin inhibitor moecules probed by brownian dynamics simulation. J. Phys. Chem., 95:9595–9600, 1991.CrossRefGoogle Scholar
  22. 22.
    S.H. Northrup, K.A. Thomasson, CM. Miller, P.D. Barker, L.D. Eltis, J.G. Guillemette, S.C. Inglis, and A.G. Mauk. Effects of charged amino acid mutations on the biomolecular kinetics of reduction of yeast iso-l-ferricytochrome c by bovine ferrocytochrome b5. Biochem., 32:6613–6623, 1993.CrossRefGoogle Scholar
  23. 23.
    R.E. Kozack, M.J. d’Mello, and S. Subramanium. Computer modeling of electrostatic steering and orientational effects in antibody-antigen association. Biophys. J., 68:807–814, 1995.PubMedCrossRefGoogle Scholar
  24. 24.
    R.R. Gabdoulline and R.C. Wade. Simulation of the diffusional association of barnase and barstar. Biophys. J., 72:1917–1929, 1997.PubMedCrossRefGoogle Scholar
  25. 25.
    A.H. Elcock, R.R. Gabdoulline, R.C. Wade, and J.A. McCammon. Computer simulation of protein-protein association kinetics: Acetylcholinesterase-Fasciculin. J. Mol. Biol, 291:149–162, 1999.PubMedCrossRefGoogle Scholar
  26. 26.
    D. Sept, A. H. Elcock, and J. A. McCammon. Computer simulations of actin polymerization can explain the barbed-pointed end assymetry. J. Mol. Biol., 294:1181–1189, 1999.PubMedCrossRefGoogle Scholar
  27. 27.
    A. H. Elcock, D. Sept, and J. A. McCammon. Computer simulation of protein-protein interactions. J. Phys. Chem., in press.Google Scholar
  28. 28.
    D. L. Ermak and J. A. McCammon. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys., 69:1352–1360, 1978.CrossRefGoogle Scholar
  29. 29.
    S.H. Northrup, S.A. Allison, and J.A. McCammon. Brownian dynamics simulations of diffusion-influenced biomolecular reactions. J. Chem. Phys., 80:1517–1524, 1984.CrossRefGoogle Scholar
  30. 30.
    R.R. Gabdoulline and R.C. Wade. Effective charges for macromolecules in solvent. J. Phys. Chem., 100:3868–3878, 1996.CrossRefGoogle Scholar
  31. 31.
    K.C. Holmes, D. Popp, W. Gebhard, and W. Kabsch. Atomic model of the actin filament. Nature, 347:44–49, 1990.PubMedCrossRefGoogle Scholar
  32. 32.
    M. E. Davis and J. A. McCammon. Electrostatics in biomolecular structure and dynamics. Chem. Rev., 94:7684–7692, 1990.Google Scholar
  33. 33.
    B. Honig and A. Nicholls. Classical electrostatics in biology and chemistry. Science, 268:1144–1149, 1995.PubMedCrossRefGoogle Scholar
  34. 34.
    M. J. Holst, N. A. Baker, and F. Wang. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I: algorithms and examples. J. Comput. Chem., 21:1319–1342, 2000.CrossRefGoogle Scholar
  35. 35.
    N. A. Baker, M. J. Hoist, and Wang. F. Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II: refinement at solvent accessible surfaces in biomolecular systems. J. Comput. Chem., 21:1343–1352, 2000.CrossRefGoogle Scholar
  36. 36.
    N. A. Baker, D. Sept, M. J. Holst, and J. A. McCammon. The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers. IBM J. Research Develop., in press.Google Scholar
  37. 37.
    Michael J. Holst. Adaptive multilevel finite element methods on manifolds and their implementation in MC (In preparation; currently available as a UCSD Dept. of Mathematics technical report and user’s guide to the MC software).Google Scholar
  38. 38.
    . K. A. Sharp and B. Honig. Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. J. Phys. Chem., 94:7684–7692, 1990.CrossRefGoogle Scholar
  39. B. Lee and F. M. Richards. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol, 55:379–400, 1971.PubMedCrossRefGoogle Scholar
  40. 40.
    O. Axelsson and V. A. Barker. Finite element solution of boundary value problems. Theory and computation. Academic Press, San Diego, CA, 1984.Google Scholar
  41. 41.
    D. Braess. Finite elements. Theory, fast solvers, and applications in solid mechanics. Cambridge Univ. Press, New York, 1997.Google Scholar
  42. 42.
    M. Hoist and F. Saied. Numerical solution of the nonlinear Possion-Boltzmann equation: developing more robust and efficient methods. J. Comput. Chem., 16:337–364, 1995.CrossRefGoogle Scholar
  43. 43.
    R. E. Bank and R. K. Smith. Parameter selection for Newton-like methods applicable to nonlinear partial differential equations. SIAM J. Numer. Anal, 17:806–822, 1980.CrossRefGoogle Scholar
  44. 44.
    R. E. Bank and R. K. Smith. Global approximate Newton methods. Numer. Math., 37:279–295, 1981.CrossRefGoogle Scholar
  45. 45.
    R. E. Bank and R. K. Smith. Analysis of a multilevel iterative method for nonlinear finite element equations. Math. Comp., 39:453–465, 1982.CrossRefGoogle Scholar
  46. 46.
    R. S Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numer. Anal, 19:400–408, 1982.CrossRefGoogle Scholar
  47. 47.
    M. Holst and D. Bernstein. Adaptive finite element solution of the initial-value problem in general relativity: Theory and algorithms. Comm. Math. Phys., submitted.Google Scholar
  48. I. Babuška and W. C. Rheinboldt. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal, 15:736–754, 1978.CrossRefGoogle Scholar
  49. 49.
    I. Babuška and W. C. Rheinboldt. A posteriori error estimates for the finite element method. Int. J. Numer. Meth. Engrg., 12:1597–1615, 1978.CrossRefGoogle Scholar
  50. 50.
    R. Verfürth. A posteriori error estimates for nonlinear problems. Finite element discretization of elliptic equations. Math. Comp., 62:445–475, 1994.CrossRefGoogle Scholar
  51. 51.
    R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement techniques. John Wiley, New York, 1996.Google Scholar
  52. 52.
    R. E. Bank and J. Xu. The hierarchical basis multigrid method and incomplete LU decomposition. In D. Keyes and J. Xu, editors, Seventh international symposium on domain decomposition methods for partial differential equations, pages 163–173. AMS, 1994.Google Scholar
  53. 53.
    A. Brandt. Algebraic multigrid theory: the symmetric case. Appl. Math. Comp., 19:23–56, 1986.CrossRefGoogle Scholar
  54. 54.
    A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for sparse matrix equations. In D. J. Evans, editor, Sparsity and its applications. Cambridge Univ. Press, 1984.Google Scholar
  55. 55.
    M. Holst and F. Saied. Multigrid solution of the Poisson-Boltzmann equation. J. Comput. Chem., 14:105–113, 1993.CrossRefGoogle Scholar
  56. 56.
    J. W. Ruge and K. Stuben. Algebraic multigrid (AMG). In S. F. McCormick, editor, Multigrid methods, volume 3 of Frontiers in applied mathematics, pages 73–130. SIAM, Philadelphia, 1987.Google Scholar
  57. 57.
    W. Hackbusch. Multi-grid methods and applications. Springer-Verlag, Berlin, 1985.Google Scholar
  58. 58.
    J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review, 34:581–613, 1992.CrossRefGoogle Scholar
  59. 59.
    R. E. Bank, T. F. Dupont, and H. Yserentant. The hierarchical basis multigrid method. Numer. Math., 52:427–458, 1988.CrossRefGoogle Scholar
  60. 60.
    M. Holst and S. Vandewalle. Schwarz methods: to symmetrize or not to symmetrize. SIAM J. Numer. Anal, 34:699–722, 1997.CrossRefGoogle Scholar
  61. 61.
    R. Bank and M. Holst. A new paradigm for parallel adaptive meshing algorithms. SIAM J. Sci. Comput., in press.Google Scholar
  62. 62.
    Jinchao Xu and Aihui Zhou. Local and parallel finite element algorithms based on two-grid discretizations. Math. Comp., 69:881–909, 2000.CrossRefGoogle Scholar
  63. 63.
    P. Dustin. Microtubules. Springer-Verlag, Berlin, 1984.CrossRefGoogle Scholar
  64. 64.
    B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular biology of the cell. Garland Publishing, New York, 1994.Google Scholar
  65. 65.
    E. Nogales, M. Whittaker, R. A. Milligan, and K. H. Downing. High-resolution model of the microtubule. Cell, 96:79–88, 1999.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Nathan A. Baker
    • 1
  • Kaihsu Tai
    • 1
  • Richard Henchman
    • 1
  • David Sept
    • 1
  • Adrian Elcock
    • 2
  • Michael Holst
    • 3
  • J. Andrew McCammon
    • 1
  1. 1.Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and Department of PharmacologyUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Department of BiochemistryUniversity of IowaUSA
  3. 3.Department of MathematicsUniversity of CaliforniaSan DiegoUSA

Personalised recommendations