Advertisement

Treecode Algorithms for Computing Nonbonded Particle Interactions

  • Robert Krasny
  • Zhong-Hui Duan
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 24)

Abstract

Two new algorithms are described for computing nonbonded particle interactions in classical molecular systems, (1) a particle-cluster treecode for the real space Ewald sum in a system with periodic boundary conditions, and (2) a cluster-cluster treecode for the total potential energy in a system with vacuum boundary conditions. The first algorithm treats electrostatic interactions and the second algorithm treats general power-law interactions. Both algorithms use a divide-and-conquer strategy, adapted rectangular clusters, and Taylor approximation in Cartesian coordinates. The necessary Taylor coefficients are computed efficiently using recurrence relations. The second algorithm implements variable order approximation, and a run-time choice between Taylor approximation and direct summation. Test results are presented for an equilibrated water system, and random and sparse particle systems.

Keywords

Total Potential Energy Taylor Approximation Fast Multipole Method Operation Count Fast Fourier Trans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karplus, M., Petsko, G. A.: Molecular dynamics simulations in biology. Nature 347 (1990) 631–639PubMedCrossRefGoogle Scholar
  2. 2.
    van Gunsteren, W. F., Hünenberger, P. H., Mark, A. E., Smith, P. E., Tironi, I. G.: Computer simulation of protein motion. Comput. Phys. Comm. 91 (1995) 305–319CrossRefGoogle Scholar
  3. 3.
    Neumaier, A.: Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Review 39 (1997) 407–460CrossRefGoogle Scholar
  4. 4.
    Stone, A. J.: The Theory of Intermolecular Forces, Oxford University Press, Oxford (1996)Google Scholar
  5. 5.
    Allen, M. P., Tildesley, D. J.: Computer Simulation of Liquids, Oxford University Press, Oxford (1987)Google Scholar
  6. 6.
    Greengard, L.: Fast algorithms for classical physics. Science 265 (1994) 909–914PubMedCrossRefGoogle Scholar
  7. 7.
    Sagui, C, Dar den, T. A.: Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu. Rev. Biophys. Biomol. Struct. 28 (1999) 155–179PubMedCrossRefGoogle Scholar
  8. 8.
    Schlick, T., Skeel, R. D., Brunger, A. T., Kalé, L. V., Board, Jr., J. A., Hermans, J., Schulten, K.: Algorithmic challenges in computational molecular biophysics. J. Comput. Phys. 151 (1999) 9–48CrossRefGoogle Scholar
  9. 9.
    Hockney, R. W., Eastwood, J. W.: Computer Simulation Using Particles, IOP Publishing, Bristol (1988)CrossRefGoogle Scholar
  10. 10.
    Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an N -log(N) method for Ewald sums in large systems. J. Chem. Phys. 98 (1993) 10089–10092CrossRefGoogle Scholar
  11. 11.
    Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., Pedersen, L.: A smooth particle mesh Ewald method. J. Chem. Phys. 103 (1995) 8577–8593CrossRefGoogle Scholar
  12. 12.
    York, D., Yang, W.: The fast Fourier Poisson method for calculating Ewald sums. J. Chem. Phys. 101 (1994) 3298–3300CrossRefGoogle Scholar
  13. 13.
    Sagui, C, Darden, T.: Multigrid methods for classical molecular dynamics simulations of biomolecules. J. Chem. Phys. 114 (2001) 6578–6591CrossRefGoogle Scholar
  14. 14.
    Brandt, A., Lubrecht, A. A.: Multilevel matrix multiplication and the fast solution of integral equations. J. Comput. Phys. 90 (1990) 348–370CrossRefGoogle Scholar
  15. 15.
    Brandt, A., Venner, C. H.: Multilevel evaluation of integral transforms with asymptotically smooth kernels. SIAM J. Sei. Comput. 19 (1998) 468–492CrossRefGoogle Scholar
  16. 16.
    Zaslavsky, L. Y., Schlick, T.: An adaptive multigrid technique for evaluating long-range forces in biomolecular simulations, Appl. Math. Comput. 97 (1998) 237–250Google Scholar
  17. 17.
    Sandak, B.: Multiscale fast summation of long range charge and dipolar interactions. J. Comp. Chem. 22 (2001) 717–731CrossRefGoogle Scholar
  18. 18. Sandak, B.: Efficient computational algorithms for fast electrostatics and molecular docking, this volume Google Scholar
  19. 19.
    Appel, A. W.: An efficient program for many-body simulation. SIAM J. Sei. Stat. Comput. 6 (1985) 85–103CrossRefGoogle Scholar
  20. 20.
    Barnes, J., Hut, P.: A hierarchical 0(NlogN) force-calculation algorithm. Nature 324 (1986) 446–449CrossRefGoogle Scholar
  21. 21.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comp. Phys. 73 (1987) 325–348CrossRefGoogle Scholar
  22. 22.
    Board Jr., J. A., Causey, J. W., Leathrum Jr., J. F., Windemuth, A., Schulten, K.: Accelerated molecular dynamics simulation with the parallel fast multipole algorithm. Chem. Phys. Lett. 198 (1992) 89–94CrossRefGoogle Scholar
  23. 23.
    Ding, H.-Q., Karasawa, N., Goddard III, W. A.: Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions. J. Chem. Phys. 97 (1992) 4309–4315CrossRefGoogle Scholar
  24. 24.
    Saito, M.: Molecular dynamics simulations of proteins in water without the truncation of long-range Coulomb interactions. Molec. Simul. 8 (1992) 321–331CrossRefGoogle Scholar
  25. 25. Elliott, W. D., Board Jr., J. A.: Fast multipole algorithm for the Lennard-Jones potential. Tech. Rep. 94-005, Duke University EECS Dept. (1994) (http:/ /www. ee. duke. edu/research/SciComp/Papers/TR94-005. html)Google Scholar
  26. 26.
    Shimada, J., Kaneko, H., Takada, T.: Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations. J. Comput. Chem. 15 (1994) 28–43CrossRefGoogle Scholar
  27. 27.
    White, C. A., Head-Gordon, M.: Derivation and efficient implementation of the fast multipole method. J. Chem. Phys. 101 (1994) 6593–6605CrossRefGoogle Scholar
  28. 28.
    Fenley, M. O., Olson, W. K., Chua, K., Boschitsch, A. H.: Fast adaptive multi-pole method for computation of electrostatic energy in simulations of polyelectrolyte DNA. J. Comput. Chem. 17 (1996) 976–991CrossRefGoogle Scholar
  29. 29.
    Niedermeier, C, Tavan, P.: Fast version of the structure adapted multipole method - efficient calculation of electrostatic forces in protein dynamics. Mol. Simul. 17 (1996) 57–66CrossRefGoogle Scholar
  30. 30.
    White, C. A., Head-Gordon, M.: Rotating around the quartic angular momentum barrier in fast multipole method calculations. J. Chem. Phys. 105 (1996) 5061–5067CrossRefGoogle Scholar
  31. 31.
    Xue, G. L., Zall, A. J., Pardalos, P. M.: Rapid evaluation of potential energy functions in molecular and protein conformations. DIM ACS Series in Discrete Mathematics and Theoretical Computer Science 23 (1996) 237–249Google Scholar
  32. 32.
    Zhao, F.: An O (N) algorithm for three-dimensional N-body simulations. AI-TR-995, Massachusetts Institute of Technology (1987)Google Scholar
  33. 33.
    Carrier, J., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm for particle simulations. SIAM J. Sei. Statist. Comput. 9 (1988) 669–686CrossRefGoogle Scholar
  34. 34.
    van Dommelen, L., Rundensteiner, E. A.: Fast, adaptive summation of point forces in the two-dimensional Poisson equation. J. Comput. Phys. 83 (1989) 126–147CrossRefGoogle Scholar
  35. 35.
    Anderson, C: An implementation of the fast multipole method without multi-poles. SIAM J. Stat. Sei. Comp. 13 (1992) 923–947CrossRefGoogle Scholar
  36. 36.
    Salmon, J. K., Warren, M. S.: Skeletons from the treecode closet. J. Comput. Phys. 1ll (1994) 136–155CrossRefGoogle Scholar
  37. 37.
    Elliott, W. D., Board Jr., J. A.: Fast Fourier transform accelerated fast multi-pole algorithm. SIAM J. Sei. Comput. 17 (1996) 398–415CrossRefGoogle Scholar
  38. 38.
    Strickland, J. H., Baty, R. S.: A pragmatic overview of fast multipole methods. Lect. Appl. Math. 32, (1996) 807–830Google Scholar
  39. 39.
    Wang, H. Y., LeSar, R.: An efficient fast-multipole algorithm based on an expansion in the solid harmonics. J. Chem. Phys. 104 (1996) 4173–4179CrossRefGoogle Scholar
  40. 40.
    Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155 (1999) 468–498CrossRefGoogle Scholar
  41. 41.
    Duan, Z.-H., Krasny, R.: An Ewald summation based multipole method. J. Chem. Phys. 113 (2000) 3492–3495CrossRefGoogle Scholar
  42. 42.
    Duan, Z.-H., Krasny, R.: An adaptive treecode for computing nonbonded potential energy in classical molecular systems. J. Comput. Chem. 22 (2001) 184–195CrossRefGoogle Scholar
  43. 43.
    Draghicescu, C, Draghicescu, M.: A fast algorithm for vortex-blob interactions. J. Comput. Phys. 116 (1995) 69–78CrossRefGoogle Scholar
  44. 44.
    Lindsay, K.: A three-dimensional Cartesian tree-code and applications to vortex sheet roll-up. Ph.D. Thesis, University of Michigan (1997)Google Scholar
  45. 45.
    Lindsay, K., Krasny, R.: A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput. Phys. 172 (2001) 879–907CrossRefGoogle Scholar
  46. 46.
    de Leeuw, S. W., Perram, J. W., Smith, E. R.: Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constant. Proc. Roy. Soc. Lond. A 373 (1980) 27–56Google Scholar
  47. 47.
    Toukmaji, A. Y., Board Jr., J. A.: Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95 (1996) 73–92CrossRefGoogle Scholar
  48. 48.
    Perram, J. W., Petersen, H. G., de Leeuw, S. W.: An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles. Mol. Phys. 65 (1988) 875–893Google Scholar
  49. 49.
    Fincham, D.: Optimisation of the Ewald sum for large systems. Mol. Sim. 13 (1994) 1–9CrossRefGoogle Scholar
  50. 50.
    Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M. L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79 (1983) 926–935CrossRefGoogle Scholar
  51. 51.
    Rapaport, D. C: The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, (1995)Google Scholar
  52. 52.
    Hummer, G., Pratt, L. R., Garcia, A. E.: Molecular theories and simulation of ions and polar molecules in water. J. Phys. Chem. 102 (1998) 7885–7895CrossRefGoogle Scholar
  53. 53.
    Vâsquez, M., Némethy, G., Scheraga, H. A.: Conformational energy calculations on polypeptides and proteins. Chem. Rev. 94 (1994) 2183–2239CrossRefGoogle Scholar
  54. 54.
    Pérez-Jordâ, J. M., Yang, W.: A simple O(NlogN) algorithm for the rapid evaluation of particle-particle interactions. Chem. Phys. Lett. 247 (1995) 484–490Google Scholar
  55. 55.
    Andrews, G. E., Askey, R., Roy, R.: Special Functions, Cambridge University Press, Cambridge, (1999)Google Scholar
  56. 56.
    Hao, M.-H. Olson, W. K.: Global equilibrium configurations of supercoiled DNA. Macromolecules 22 (1989) 3292–3303CrossRefGoogle Scholar
  57. 57.
    Boschitsch, A. H., Fenley, M. O., Olson, W. K.: A fast adaptive multipole algorithm for calculating screened Coulomb (Yukawa) interactions. J. Comput. Phys. 151 (1999) 212–241CrossRefGoogle Scholar
  58. 58.
    Esselink, K.: A comparison of algorithms for long-range interactions. Comput. Phys. Commun. 87 (1995) 375–395Google Scholar
  59. 59.
    Pollock, E. L., Glosli, J.: Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems. Comput. Phys. Commun. 95 (1996) 93–110Google Scholar
  60. 60.
    Deserno, M., Holm, C: How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109 (1998) 7678–7693CrossRefGoogle Scholar
  61. 61. Barth, E., Leimkuhler, B., Reich, S.: A test set for molecular dynamics, this volume Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Robert Krasny
    • 1
  • Zhong-Hui Duan
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations