Integrated Supramolecular Systems: From Sensors to Switches

  • J.-P. Malval
  • I. Gosse
  • J.-P. Morand
  • R. Lapouyade
Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 2)


Integrated supramolecular systems with a receptor built in a photo- or electroactive unit have been reviewed with the focus on their particular electronic properties and different photochemical and electrochemical processes which make them suitable for cation sensing or switching. The fluoroionophores with an electron donating ionophore have been the most investigated and their initial weakness related to cation decoordination in the excited state. The small blue-shift of the fluorescence spectrum and the slight change of the emission quantum yield upon cation complexation, have now been overcome by a careful combination of several donor and acceptor units, which provide new low-lying excited states decoupled from the complexed ionophore and by using TICT probes where the electronic coupling between the D and A parts is too small to induce decoordination of the cation during the excited state lifetime. On the contrary the switching action requires that the binding ability of the ionophore be lowered or increased on a larger time scale. This has been done by electrochemical oxidation and by insertion of the ionophore into a photochromic system. Differences in binding ability of three to four orders of magnitude have been obtained and it is our belief that integrated supramolecular systems combining an ionophore and a photochromic moiety (photoionochromics) will be for cation switching as successfull as integrated fluoroionophores have been for sensing cations.


Forster Resonance Energy Transfer Boronic Acid Supramolecular System Excited State Lifetime Emission Quantum Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lehn JM (1988) Angew Chem Int Ed 27:89CrossRefGoogle Scholar
  2. 2.
    Sauvage JP, Hosseini MW (1996) (eds) Comprehensive supramolecular chemistry. Pergamon Press, OxfordGoogle Scholar
  3. 3.
    Balzani V (1987) (ed) Supramolecular photochemistry. Reidel, DordrechtGoogle Scholar
  4. 4.
    Weiss S (1999) Science 283:1676CrossRefGoogle Scholar
  5. 5.
    Stoddart JF (2001) Molecular machines, Acc Chem Res 34:410CrossRefGoogle Scholar
  6. 6.
    Ellis AB, Walt DR (2000) Chemical sensors. Chem Rev 100:2477CrossRefGoogle Scholar
  7. 7.
    Desvergne JP, Czarnik AW (1997) (eds) Chemosensors of ion and molecule recognition. NATO ASI Series. Kluwer Academic Publishers, DordrechtGoogle Scholar
  8. 8.
    Kaifer AE, Mendoza S (1996) In: Sauvage JP, Hosseini MW (eds) Comprehensive supramolecular chemistry. Pergamon Press, Oxford, p 701Google Scholar
  9. 9.
    Moerner WE, Orrit M (1999) Science 283:1670CrossRefGoogle Scholar
  10. 10.
    De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley JM, McCoy CP, Rademacher JT, Rice TE (1997) Chem Rev 97:1515CrossRefGoogle Scholar
  11. 11.
    Bissel RA, de Silva MP, Gunaratne HQN, Lynch PLM, Maguire GEM, McCoy CP, Sandanayake KRAS (1992) Chem Soc Rev 21:187CrossRefGoogle Scholar
  12. 12.
    Bissel RA, de Silva MP, Gunaratne HQN, Lynch PLM, Maguire GEM, Sandanayake KRAS (1993) Topics in Current Chemistry 168:224Google Scholar
  13. 13.
    Selvin P (1995) In: Sauer K (ed) Methods in enzymology, Academic Press, Orlando, pp 300–344Google Scholar
  14. 14.
    Sammes PG, Yahioglu G (1996) Modern bioassays using metal chelates as luminescent probes 13:1Google Scholar
  15. 15.
    Bouas-Laurent H, Castellan A, Daney M, Desvergne JP, Guinand G, Marsau P, Riffaud M-H (1986) J Am Chem Soc 108:315CrossRefGoogle Scholar
  16. 16.
    Löhr HG, Vögtle F (1985) Acc Chem Res 18:65CrossRefGoogle Scholar
  17. 17.
    Valeur B (1994) In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. Plenum Press, New York, p 21Google Scholar
  18. 18.
    Rettig W, Lapouyade R (1994) In: Lakowicz JR (ed) Topics in Fluorescence Spectroscopy. Plenum Press, New York, p 109Google Scholar
  19. 19.
    Valeur B, Leray I (2000) Coord Chem Rev 205:3CrossRefGoogle Scholar
  20. 20.
    De Silva AP, Fox DB, Allen JM, Huxley AJM, Moody SM (2000) Coord Chem Rev 205:41CrossRefGoogle Scholar
  21. 21.
    Takagi M, Nakamura H, Ueno K (1977) Anal Lett 10:1115Google Scholar
  22. 22.
    Vögtle F (1980) Pure Appl Chem 52:2405CrossRefGoogle Scholar
  23. 23.
    Kaneda T, Hirose K, Misumi S (1989) J Am Chem Soc 111:742CrossRefGoogle Scholar
  24. 24.
    Nishi T, Ikeda A, Matsuda T, Shinkai S (1991) J Chem Soc Chem Commun 339Google Scholar
  25. 25.
    Miyaji H, Sato W, Sessler JL (2000) Angew Chem Int Ed 39:1777CrossRefGoogle Scholar
  26. 26.
    Czarnik AW (1995) Chem Biol 2:423CrossRefGoogle Scholar
  27. 27.
    Valeur B (1993) In: Molecular luminescence spectroscopy, part 3. Wiley, New York, p 25Google Scholar
  28. 28.
    Bourson J, Valeur B (1989) J Phys Chem 93:3871CrossRefGoogle Scholar
  29. 29.
    Létard JF, Lapouyade R, Rettig W (1993) Pure Appl Chem 65:1705CrossRefGoogle Scholar
  30. 30.
    Bourson J, Pouget J, Valeur B (1993) J Phys Chem 97:4552CrossRefGoogle Scholar
  31. 31.
    Delmond S, Létard JF, Lapouyade R, Mathevet R, Jonusauskas G, Rulliere C (1996) New J Chem 20:861Google Scholar
  32. 32.
    Martin MM, Plaza P, Meyer YH, Badaoui F, Bourson J, Lefevre JP, Valeur B (1994) J Phys Chem 100:6879CrossRefGoogle Scholar
  33. 33.
    Dumon P, Jonusauskas G, Dupuy F, Pée P, Rullière C, Létard JF, Lapouyade R (1994) J Phys Chem 98:10391CrossRefGoogle Scholar
  34. 34.
    Mathevet R, Jonusauskas G, Rullière C, Létard JF, Lapouyade R (1995) J Phys Chem 99:15709CrossRefGoogle Scholar
  35. 35.
    Smid J (1972) In: Szwarc M (ed) Ions and ion pairs in organic reactions. Wiley Inter-science, New York, chap 3Google Scholar
  36. 36.
    Soumillion JP, Vandereecken P, Van Der Auweraer M, De Schryver FC, Schanck A (1989) J Am Chem Soc 111:2217CrossRefGoogle Scholar
  37. 37.
    Grynkiewicz G, Poenie M, Tsien RY (1985) J Biol Chem 260:3440Google Scholar
  38. 38.
    Van den Bergh V, Boens N, De Schryver FC, Ameloot M, Steels P, Gallay J, Vincent M, Kowalczyk A (1995) Biophys J 68:1110CrossRefGoogle Scholar
  39. 39.
    Rurack K, Sczepan M, Spieles M, Resch-Genger U, Rettig W (2000) Chem Phys Lett 320:87CrossRefGoogle Scholar
  40. 40.
    Crochet P, Malval JP, Lapouyade R (2000) Chem Commun 289Google Scholar
  41. 41.
    Malval JP, Chaimbault C, Fischer B, Morand JP, Lapouyade R (2001) Res Chem Intermed 27:21CrossRefGoogle Scholar
  42. 42.
    Létard JF, Delmond S, Lapouyade R, Braun D, Rettig W (1995) Rec Trav Chim Pays-Bas 114:517CrossRefGoogle Scholar
  43. 43.
    Collins GE, Choi LS, Callahan JH (1998) J Am Chem Soc 120:1474CrossRefGoogle Scholar
  44. 44.
    Kosower EM, (1982) Acc Chem Res 15:266CrossRefGoogle Scholar
  45. 45.
    Roshal AD, Grigorovich AV, Doroshenko AO, Pivovarenko VG, Demchenko AP (1998) J Phys Chem A 102:5907CrossRefGoogle Scholar
  46. 46.
    Rurack K, Rettig W, Resch-Genger U, (2000) Chem Commun 407Google Scholar
  47. 47.
    Rettig W, Rurack K, Sczepan M (2001) In: Valeur B, Brochon JC (ed) New trends in fluorescence spectroscopy. Springer, Berlin, p 125CrossRefGoogle Scholar
  48. 48.
    Malval JP, Lapouyade R (2001) Helv Chim Acta, 84:2439CrossRefGoogle Scholar
  49. 49.
    James TD, Sandanayake KRAS, Shinkai S (1996) Angew Chem Int Ed 35:1911Google Scholar
  50. 50.
    DiCesare N, Lakowicz JR (2001) J Phys Chem A 105:6834CrossRefGoogle Scholar
  51. 51.
    Arimori S, Bosch LI, Ward CJ, James TD (2001) Tetrahedron Lett 42:4553CrossRefGoogle Scholar
  52. 52.
    Rurack K, Bricks JL, Reck G, Radeglia R, Resch-Genger U (2000) J Phys Chem 104: 3087CrossRefGoogle Scholar
  53. 53.
    Rurack K, Koval’chuck A, Bricks JL, Slominskii JL (2001) J Am Chem Soc 123:6205CrossRefGoogle Scholar
  54. 54.
    Swager TM (1998) Acc Chem Res 31:201CrossRefGoogle Scholar
  55. 55.
    McQuade DT, Pullen AE, Swager TM (2000) Chem Rev 100:2537CrossRefGoogle Scholar
  56. 56.
    Martin MM, Plaza P, Meyer YH, Badaoui F, Bourson J, Lefèvre JP, Valeur B (1996) J Phys Chem 100:6879CrossRefGoogle Scholar
  57. 57.
    Clark JH, Shapiro SL, Winn KRC (1979) J Am Chem Soc 101:746CrossRefGoogle Scholar
  58. 58.
    Gutman M, Huppert D, Pines E (1981) J Am Chem Soc 103:3709CrossRefGoogle Scholar
  59. 59.
    Adams SR, Kao JPY, Grynkiewicz G, Minta A, Tsien RY (1988) J Am Chem Soc 110: 3212CrossRefGoogle Scholar
  60. 60.
    Ellis-Davis GCR, Kaplan JH (1988) J Org Chem 53:1966CrossRefGoogle Scholar
  61. 61.
    Warmuth R, Grell E, Lehn JM, Bats JW, Quinckert G (1991) Helv Chim Acta 74:671CrossRefGoogle Scholar
  62. 62.
    Bouas Laurent H, Castellan A, Desvergne JP, Lapouyade R (2000) Chem Soc Rev 29: 43CrossRefGoogle Scholar
  63. 63.
    Dürr H, Bouas-Laurent H (1990) Photochromism, molecules and systems. Elsevier, AmsterdamGoogle Scholar
  64. 64.
    Irie M, Uchida K (1998) Bull Chem Soc Jpn 71:985CrossRefGoogle Scholar
  65. 65.
    Irie M (2000) Chem Rev 100:1685CrossRefGoogle Scholar
  66. 66.
    Alfimov MV, Gromov SP, Fedorov YV, Fedorova OA, Vedernikov Al, Churakov AV, Kuz’mina LG, Howard JAK, Bossmann S, Braun A, Woerner M, Sears Jr DF, Saltiel J (1999) J Am Chem Soc 121:4992CrossRefGoogle Scholar
  67. 67.
    Crano JC, Guglielmetti RJ (1999) Organic photochromic and thermochromic compounds. Plenum, New YorkGoogle Scholar
  68. 68.
    Saji T (1986) Chem Lett 275Google Scholar
  69. 69.
    Boulas PL, Gomez-Kaifer M, Echegoyen L (1998) Angew Chem Int Ed 37:216CrossRefGoogle Scholar
  70. 70.
    Beer PD, Gale PA, Chen GZ (1999) J Chem Soc Dalton Trans 1897Google Scholar
  71. 71.
    Miller SR, Gustowski DA, Chen ZH, Gokel GW, Echegoyen L, Kaifer AE (1988) Anal Chem 60:2021CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • J.-P. Malval
  • I. Gosse
  • J.-P. Morand
  • R. Lapouyade

There are no affiliations available

Personalised recommendations