Genomic Organization of LPS-Specific Loci

  • P. P. Reeves
  • L. Wang
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 264/2)


Lipopolysaccharide (LPS) genes have many of the characteristics of PAIs but also differ in significant ways. Lipopolysaccharide differs from the products of most PAI genes in that it is an essential component of the cell, and mutants totally lacking LPS are not found.


Gene Cluster Outer Core Yersinia Pestis Transferase Gene Plesiomonas Shigelloides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achtman M, Pluschke G (1986) Clonal analysis of descent and virulence among selected Escherichia coli. Annu Rev Microbiol 40:185–210PubMedCrossRefGoogle Scholar
  2. Achtman M, Heuzenroeder M, Kusecek B, Ochman H, Caugant D, Selander RK, Väisanen-Rhen V, Korhonen TK, Stuart S, ørskov F, ørskov I (1986) Clonal analysis of Escherichia coli O2: K1 isolated from diseased humans and animals. Infect Immun 51:268–276Google Scholar
  3. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96:14043–14048PubMedCrossRefGoogle Scholar
  4. Amor K, Heinrichs DE, Fridrich E, Ziebell K, Johnson RP, Whitfield C (2000) Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli. Infect Immun 68:1116–1124PubMedCrossRefGoogle Scholar
  5. Andrianopoulos K, Wang L, Reeves PR (1998) Identification of the fucose synthetase gene in the colanic acid gene cluster of Escherichia coli K-12. J Bacteriol 180:998–1001PubMedGoogle Scholar
  6. Bailey MJ, Hughes C, Koronakis V (1996) Increased distal gene transcription by the elongation factor RfaH, a specialized homologue of NusG. Mol Microbiol 22:729–737PubMedCrossRefGoogle Scholar
  7. Bastin DA, Brown PK, Haase A, Stevenson G, Reeves PR (1993) Repeat unit polysaccharides of bacteria: a model for polymerisation resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol 7:725–734PubMedCrossRefGoogle Scholar
  8. Batchelor RA, Haraguchi GE, Hull RA, Hull SI (1991) Regulation by a novel protein of the bimodal distribution of lipopolysaccharide in the outer membrane of Escherichia coli. J Bacteriol 173:5699–5704Google Scholar
  9. Berlyn MKB (1998) Linkage map of Escherichia coli K-12, edition 10: the traditional map. Micro Mol Biol Rev 62:814–984Google Scholar
  10. Beutin L, Manning PA, Achtman M, Willetts N (1981) sfrA and sfrB products of Escherichia coli K-12 are transcriptional control factors. J Bacteriol 145:840–844PubMedGoogle Scholar
  11. Brooke JS, Valvano MA (1996) Biosynthesis of inner core lipopolysaccharide in enteric bacteria: identification and characterization of a conserved phosphoheptose isomerase. J Biol Chem 271:3608–3614PubMedCrossRefGoogle Scholar
  12. Brown PK, Romana LK, Reeves PR (1992) Molecular analysis of the rfb gene cluster of Salmonella serovar Muenchen (strain M67): genetic basis of the polymorphism between groups C2 and B. Mol Microbiol 6:1385–1394PubMedCrossRefGoogle Scholar
  13. Campos LC, Whittam TS, Gomes TAT, Andrade JRC, Trabulsi RL (1994) Escherichia coli serogroup 0111 includes several clones of diarrheagenic strains with different virulence properties. Infect Immun 62:3282–3288PubMedGoogle Scholar
  14. CDC (1999) Laboratory methods for the diagnosis of epidemic dysentery and cholera. Atlanta, GeorgiaGoogle Scholar
  15. Coleman WG (1983) The rfaD gene codes for ADP-L-glycero-D-manno-heptose-6-epimerase. J Biol Chem 258:1985–1990PubMedGoogle Scholar
  16. Curd H, Liu D, Reeves PR (1998) Relationships among the O-antigen gene clusters of Salmonella enterica groups B, Dl, D2, and D3. J Bacteriol 180:1002–1007PubMedGoogle Scholar
  17. Eidels L, Osborn MJ (1971) Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium. Proc Natl Acad Sci USA 68:1673–1677PubMedCrossRefGoogle Scholar
  18. Eidels L, Osborne MJ (1974) Phosphoheptose isomerase, first enzyme in the biosynthesis of aldoheptose. Microbiol Rev 249:5642–5648Google Scholar
  19. Feng P (1993) Identification of Escherichia coli O157: H7 by DNA probe specific for an allel of uidA gene. Mol Cell Probes 7:151–154PubMedCrossRefGoogle Scholar
  20. Feng P, Lampel KA, Karch H, Whittam TS (1998) Genotypic and phenotypic changes in the emergence of Escherichia coli O157: H7. J Infect Dis 177:1750–1753PubMedCrossRefGoogle Scholar
  21. Franco VA, Liu D, Reeves PR (1998) The Wzz (Cld) protein in Escherichia coli: amino acid sequence variation determines O antigen chain length specificity. J Bacteriol 180:2670–2675PubMedGoogle Scholar
  22. Frank MM, Joiner K, Hammer C (1987) The function of antibody and complement in the lysis of bacteria. Rev Infect Dis 9 [Suppl 5]:S537–545PubMedCrossRefGoogle Scholar
  23. Gaspar JA, Thomas JA, Marolda CL, Valvano MA (2000) Surface expression of O-specific lipopolysaccharide in Escherichia coli requires the function of the TolA protein. Mol Microbiol 38:262–275PubMedCrossRefGoogle Scholar
  24. Gemski PJ, Sheahan DG, Washington O, Formal SB (1972) Virulence of Shigella flexneri hybrids expressing Escherichia coli somatic antigens. Infect Immun 6:104–111PubMedGoogle Scholar
  25. Goldman RC, Boiling TJ, Kohlbrenner WE, Kim Y, Fox JL (1986) Primary structure of CTP: CMP-3-deoxy-D-manno-octulosonate cytidyl-transferase (CMP-KDO synthetase) from Escherichia coli. J Biol Chem 261:15831–15835PubMedGoogle Scholar
  26. Groisman EA, Ochman H (1996) Pathogenicity islands: bacterial evolution in quantum leaps. Cell Vol 87:791–794Google Scholar
  27. Gulig PA (1990) Virulence plasmids of Salmonella typhimurium and other salmonellae. Microb Pathog 8:3–11PubMedCrossRefGoogle Scholar
  28. Gulig PA, Danbara H, Guiney DG, Lax AJ, Norel F, Rhen M (1993) Molecular analysis of spv virulence genes of the salmonella virulence plasmids. Mol Microbiol 7:825–830PubMedCrossRefGoogle Scholar
  29. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679PubMedCrossRefGoogle Scholar
  30. Heinrichs DE, Monteiro MAM, Perry MB, Whitfield C (1998a) The assembly system for the lipopoly-saccharide R2 core-type of Escherichia coli is a hydrid of those found in Escherichia coli K-12 and Salmonella enterica. J Biol Chem 273:8849–8859PubMedCrossRefGoogle Scholar
  31. Heinrichs DE, Yethon JA, Whitfield C (1998b) Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 30: 221–232PubMedCrossRefGoogle Scholar
  32. Hobbs M, Reeves PR (1994) The JUMPstart sequencer 39-bp element common to several polysac-charide gene clusters. Mol Microbiol 12:855–856PubMedCrossRefGoogle Scholar
  33. Hobbs M, Reeves PR (1995) Genetic organisation and evolution of Yersinia pseudotuberculosis 3, 6-dideoxyhexose biosynthetic genes. Biochim Biophys Acta 1245:273–277PubMedCrossRefGoogle Scholar
  34. Holst O, Brade H (1992) Chemical structure of the core region of lipopolysaccharides. In: Morrison DC, Ryan JL (eds) Bacterial endotoxic lipopolysaccharides. CRC Press, Boca Raton, FloridaGoogle Scholar
  35. Jensen SO, Reeves PR (2001) Molecular evolution of the GDP-mannose pathway genes (manB and manC) in S. enterica. Microbiology 147:599–610PubMedGoogle Scholar
  36. Johnson RP, Clarke RC, Wilson JB, Read SC, Rahn K, Renwick SA, Sandhu KA, Alves D, Karmali MA, Lior H, Mcewen SA, Spika JS, Gyles CL (1996) Growing concerns and recent outbreaks involving non-O157: H7 serotypes of verotoxigenic Escherichia coli. J Food Pro 59:1112–1122Google Scholar
  37. Kadrmas JL, Raetz CRH (1998) Enzymatic synthesis of lipopolysaccharide in Escherichia coli. Purification and properties of heptosyltransferase I. J Biol Chem 273:2799–2807PubMedCrossRefGoogle Scholar
  38. Keenleyside WJ, Whitefield C (1996) A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J Biol Chem 271:28581–28592PubMedCrossRefGoogle Scholar
  39. Kenne L, Lindberg B, Soderholm E, Bundle DR, Griffith DW (1983) Structural studies of the O-antigens from Salmonella greenside and Salmonella adelaide. Carbohydr Res 111:289–296PubMedCrossRefGoogle Scholar
  40. Kessler A, Brown PK, Romana LK, Reeves PR (1991) Molecular cloning and genetic characterization of the rfb region from Yersinia pseudotuberculosis serovar IIA, which determines the formation of the 3, 6 dideoxyhexose abequose. J Gen Microbiol 137:2689–2695PubMedCrossRefGoogle Scholar
  41. Kessler A, Haase A, Reeves PR (1993) Molecular analysis of the 3, 6-dideoxyhexose pathway genes of Yersinia pseudotuberculosis serogroup IIa. J Bacteriol 175:1412–1422PubMedGoogle Scholar
  42. Klena JD, Asford II RS, Schnaitman CA (1992) Role of Escherichia coli K12 rfa genes and the rfp gene of Shigella dysenteriae 1 in generation of lipopolysaccharide core heterogeneity and attachment of O antigen. J Bacteriol 174:7297–7307PubMedGoogle Scholar
  43. Lai V, Wang L, Reeves PR (1998) Escherichia coli clone Sonnei (Shigella sonnei) had a chromosomal O-antigen gene cluster prior to gaining its current plasmid-borne O-antigen genes. J Bacteriol 180:2983–2986PubMedGoogle Scholar
  44. Le Minor L, Popoff MY (1987) Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the genus Salmonella. Int J Syst Bacteriol 37:465–468CrossRefGoogle Scholar
  45. Leeds JA, Welch RA (1996) RfaH enhances elongation of Escherichia coli hlyCABD mRNA. J Bacteriol 178:1850–1857PubMedGoogle Scholar
  46. Leeds JA, Welch RA (1997) Enhancing transcription through the Escherichia coli hemolysin operon, hlyCABD: RfaH and upstream JUMPStart DNA sequences function together via a postinitiation mechanism. J Bacteriol 179:3519–3527PubMedGoogle Scholar
  47. Li Q, Reeves PR (2000) Genetic variation of dTDP-L-rhamnose pathway genes in Salmonella enterica. Microbiology 146:2291–2307PubMedGoogle Scholar
  48. Lindberg B, Lindh F, Longren J, Lindberg AA, Svenson SB (1981) Structural studies of the O-specific side-chain of the lipopolysaccharide from Escherichia coli O55. Carbohydr Res 97:105–112Google Scholar
  49. Lior H (1994) Classification of Escherichia coli. In: Gyles CL (ed) Escherichia coli in domestic animals and humans. CAB International, Wallingford, UKGoogle Scholar
  50. Liu D, Reeves PR (1994a) Escherichia coli regains its O antigen. Microbiology 140:49–57PubMedCrossRefGoogle Scholar
  51. Liu D, Reeves PR (1994b) Presence of different O antigen forms in three isolates of one clone of E. coli. Genetics 138:7–10Google Scholar
  52. Liu D, Haase AM, Lindqvist L, Lindberg AA, Reeves PR (1993) Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and El. J Bacteriol 175:3408–3413PubMedGoogle Scholar
  53. Liu D, Lindquist L, Reeves PR (1995) Transferases of O-antigen biosynthesis in Salmonella enterica: dideoxyhexosyl transferases of groups B and C2 and acetyltransferase of group C2. J Bacteriol 177:4084–4088PubMedGoogle Scholar
  54. Liu D, Cole R, Reeves PR (1996) An O-antigen processing function for Wzx(RfbX): a promising candidate for O-unit flippase. J Bacteriol 178:2102–2107PubMedGoogle Scholar
  55. Mäkelä PH, Stocker BAD (1984) Genetics of lipopolysaccharide. In: Rietschel ET (ed) Handbook of endotoxin. Elsevier Science, AmsterdamGoogle Scholar
  56. Mäkelä PH, Valtonen W, Valtonen M (1973) Role of O-antigen (lipopolysaccharide) factors in the virulence of Salmonella. J Infect Dis 128 [Suppl]:S84–S85Google Scholar
  57. Manning PA, Stroeher UH, Morona R (1993) Molecular basis for O-antigen biosynthesis in Vibrio cholerae Ol: Ogawa-Inaba switching. In: Wachsmuth IK, Blake P, Olsvik O (eds) Vibrio cholerae and cholera. American Society for Microbiology, Washington DCGoogle Scholar
  58. McGrath BC, Osborn MJ (1991a) Evidence for energy-dependent transposition of core lipopolysaccharide across the inner membrane of Salmonella typhimurium. J Bacteriol 173:3134–3137PubMedGoogle Scholar
  59. McGrath BC, Osborn MJ (1991b) Localisation of the terminal steps of O-antigen synthesis in Salmonella typhimurium. J Bacteriol 173:649–654PubMedGoogle Scholar
  60. Meier U, Mayer H (1985) Genetic location of genes encoding enterobacterial common antigen. J Bacteriol 163:756–762PubMedGoogle Scholar
  61. Morrison DC, Kline LF (1977) Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides. J Immunol 118:362–368PubMedGoogle Scholar
  62. Mulford CA, Osborn MJ (1983) A intermediate step in translocation of lipopolysaccharide to outer membrane of Salmonella typhimurium. Proc Natl Acad Sci USA 80:1159–1163PubMedCrossRefGoogle Scholar
  63. Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli Clin Microbiol Rev 11:142–201PubMedGoogle Scholar
  64. Nieto JM, Bailey MJ, Hughes C, Koronakis V (1996) Suppression of transcription polarity in the Escherichia coli haemolysin operon by a short upstream element shared by polysaccharide and DNA transfer determinants. Mol Microbiol 19:705–713PubMedCrossRefGoogle Scholar
  65. Ochman H, Wilson AC (1987a) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86PubMedCrossRefGoogle Scholar
  66. Ochman H, Wilson AC (1987b) Evolutionary history of enteric bacteria. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology. American Society for Microbiology, Washington, DCGoogle Scholar
  67. Ochman H, Whittam TS, Caugant DA, Sciander RK (1983) Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella. J Gen Microbiol 129:2715–2726PubMedGoogle Scholar
  68. Osborn MJ (1979) Biosynthesis and assembly of the lipopolysaccharide of the outer membrane. In: Inouye M (ed) Bacterial outer membranes. John Wiley and Sons, New YorkGoogle Scholar
  69. Osborn MJ, Cynkin MA, Gilbert JM, Müller L, Singh M (1972) Synthesis of bacterial O-antigen. Methods Enzymol 28:583–601CrossRefGoogle Scholar
  70. Perry MB, MacLean L, Griffith DW (1986) Structure of the O-chain polysaccharide of the phenol-phase soluble lipopolysaccharide of Escherichia coli 0:157: H7. Biochem Cell Biol 64:21–28PubMedCrossRefGoogle Scholar
  71. Plötz BM, Lindner B, Stetter KO, Holst O (2000) Characterization of a novel Lipid A containing D-galaturonic acid that replaces phosphate residues. J Biol Chem 275:11222–11228PubMedCrossRefGoogle Scholar
  72. Pluschke G, Mayden J, Achtman M, Levine RP (1983) Role of the capsule and the O-antigen in resistance of O18: K1 Escherichia coli to complement-mediated killing. J Bacteriol 42:907–913Google Scholar
  73. Popoff MY, Le Minor L (1997) Antigenic formulas of the Salmonella serovars, 7th revision. WHO Collaborating Centre for Reference and Research on Salmonella. Institut Pasteur Paris, FranceGoogle Scholar
  74. Pupo GM, Karaolis DKR, Lan R, Reeves PR (1997) Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect Immun 65:2685–2692PubMedGoogle Scholar
  75. Pupo GM, Lan R, Reeves PR (2000) Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 97:10567–10572PubMedCrossRefGoogle Scholar
  76. Raetz CRH (1990) Biochemistry of endotoxins. Annu Rev Biochem 59:129–170PubMedCrossRefGoogle Scholar
  77. Raetz CRH (1996) Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles. In: Neidhardt FD (ed) Escherichia and Salmonella typhimurium: Cellular and molecular biology, 2nd edn. American Society for Microbiology, Washington, DCGoogle Scholar
  78. Rauss K, Kontrohr T, Vertenyi A, Szendrei L (1970) Serological and chemical studies of Sh. sonnei, Pseudomonas shigelloides and C27 strains. Acta Microbi Acad Sci Huang 17:157–166Google Scholar
  79. Reeves PR (1992) Variation in O antigens, niche specific selection and bacterial populations. FEMS Microbiol Lett 100:509–516Google Scholar
  80. Reeves PR (1994) Biosynthesis and assembly of lipopolysaccharide. In: Neuberger A, van Deenen LLM (eds) Bacterial cell wall. Elsevier, AmsterdamGoogle Scholar
  81. Reeves PR, Hobbs M, Valvano M, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz C, Rick P (1996a) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4:495–503PubMedCrossRefGoogle Scholar
  82. Reeves PR, Hobbs M, Valvano M, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz C, Rick P (1996b) A new nomenclature for bacterial surface polysaccharide genes, http://www.angissuozau/BacPolGenes/welcome/htmlGoogle Scholar
  83. Reid SD, Selander RK, Whittam TS (1999) Sequence diversity of flagellin (fliC) alleles in pathogenic Escherichia coli. J Bacteriol 181:153–160PubMedGoogle Scholar
  84. Rick PD, Raetz CRH (1999) Microbial pathways of lipid A biosynthesis. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New YorkGoogle Scholar
  85. Rietschel ET, Brade L, Lindner B, Zähringer U (1992) Biochemistry of lipopolysaccharides. In: Morrison DC, Ryan JL (eds) Bacterial endotoxic lipopolysaccharides. CRC Press, Boca Raton, FloridaGoogle Scholar
  86. Rodrigues J, Scaletsky ICA, Campos LC, Gomes TAT, Whittam TS, Trabulis LR (1996) Clonal structure and virulence factors in strains of Escherichia coli of the classic serogroup 055. Infect Immun 64:2680–2686PubMedGoogle Scholar
  87. Rotger R, Casadesus J (1999) The virulence plasmids of Salmonella. Int Microbiol 2:177–184PubMedGoogle Scholar
  88. Sanderson KE, Hessel A, Rudd KE (1995) Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev 59:241–303PubMedGoogle Scholar
  89. Schnaitman CA, Klena JD (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57:655–682PubMedGoogle Scholar
  90. Selander RK, Beltran P, Smith NH (1991) Evolutionary genetics of Salmonella. In: Selander RK, Clark AG, Whittam TS (eds) Evolution at the molecular level. Sinauer Associates, Sunderland, Mass.Google Scholar
  91. Shepherd JG, Wang L, Reeves PR (2000) Comparison of O-antigen gene clusters of Escherichia coli (Shigella) Sonnei and Plesiomonas shigelloides O17: Sonnei gained its current plasmid-borne O-antigen genes from P. shigelloides in a recent event. Infect Immun 68:6056–6061PubMedCrossRefGoogle Scholar
  92. Stevens MP, Clarke BR, Roberts IS (1997) Regulation of the Escherichia coli K5 capsule gene cluster by transcription antitermination. Mol Microbiol 24:1001–1012PubMedCrossRefGoogle Scholar
  93. Stevenson G, Andrianopoulos K, Hobbs H, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893PubMedGoogle Scholar
  94. Stevenson G, Lan R, Reeves PR (2000) The Colanic Acid gene cluster of Salmonella enterica has a complex history. FEMS Microbiol Lett 191:11–16PubMedCrossRefGoogle Scholar
  95. Sugiyama T, Kido N, Kato Y, Koide N, Yoshida T, Yokochi T (1997) Evolutionary relationship among rfb gene clusters synthesizing mannose homopolymer as O-specific polysaccharides in Escherichia coli and Klebsiella. Gene 198:111–113PubMedCrossRefGoogle Scholar
  96. Sugiyama T, Kido N, Kato Y, Koide N, Yoshida T, Yokochi T (1998) Generation of Escherichia coli O9a serotype, a subtype of E. coli O9, by transfer of the wb* gene cluster of Klebsiella O3 into E. coli via recombination. J Bacteriol 180:2775–2778PubMedGoogle Scholar
  97. Takayama K, Qureshi N (1992) Chemical structure of lipid A. In: Morrison DC, Ryan JL (eds) Bacterial endotoxic lipopolysaccharides. CRC Press, Boca Raton, FloridaGoogle Scholar
  98. Taylor DN, Trofa AC, Sadoff J, Chu C, Bryla D, Shiloach J, Cohen D, Ashkenazi S, Lerman Y, Egan W, Schneerson R, Robbins JB (1993) Synthesis, characterization, and clinical evaluation of conjugate vaccines composed of the O-specific polysaccharides of Shigella dysenteriae type 1, Shigella flexneri type 2a, and Shigella sonnei (Plesiomonas shigelloides) bound to bacterial toxoids. Infect Immun 61:3678–3687PubMedGoogle Scholar
  99. Thampapillai G, Lan R, Reeves PR (1994) Molecular evolution in the gnd locus of Salmonella enterica. Mol Biol Evol 11:813–828PubMedGoogle Scholar
  100. Valvano MA, Marolda CL, Bittner M, Glaskin-Clay M, Simon TL, Klena JD (2000) The rfaE gene from Escherichia coli encodes a bifunctional protein involved in biosynthesis of the lipopolysaccharide core precursor ADP-L-glycero-D-manno-heptose. J Bacteriol 182:488–497PubMedCrossRefGoogle Scholar
  101. Wang L, Reeves PR (1998) Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect Immun 66:3545–3551PubMedGoogle Scholar
  102. Wang L, Jensen S, Hallman R, Reeves PR (1998) Expression of the O antigen gene cluster is regulated by RfaH through the JUMPstart sequence. FEMS Microbiol Lett 165:201–206PubMedCrossRefGoogle Scholar
  103. Wang L, Rothemund D, Curd H, Reeves PR (2000) Sequence diversity of the Escherichia coli H7 fliC genes: Implication for a DNA based typing scheme for E. coli O157: H7. J Clin Microbiol 38:1786–1790PubMedGoogle Scholar
  104. Whittam TS (1996) Genetic variation and evolutionary processes in natural populations of Escherichia coli. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia and Salmonella. Cellular and molecular biology. ASM Press, Washington, DCGoogle Scholar
  105. Whittam TS, Wilson RA (1988) Genetic relationships among pathogenic Escherichia coli of serogroup O157. Infect Immun 56:2467–2473PubMedGoogle Scholar
  106. Whittam TS, Wolfe ML, Wachsmuth IK, ørskov F, ørskov I, Wilson RA (1993) Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun 61:1619–1629Google Scholar
  107. Woisetschlager M, Hogenauer G (1987) The kdsA gene coding for S-deoxy-D-manno-octulosonic acid 8-phosphate synthetase is part of an operon in Escherichia coli. Mol Gen Genet 207:369–373PubMedCrossRefGoogle Scholar
  108. Woisetschlager M, Hodel-Neuhofer A, Hogenauer G (1988) Localization of the kdsA gene with the aid of the physical map of the Escherichia coli chromosome. J Bacteriol 170:5382–5384PubMedGoogle Scholar
  109. Xiang SH, Hobbs M, Reeves PR (1994) Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence-mediated recombination event between group E and Dl strains. J Bacteriol 176:4357–4365PubMedGoogle Scholar
  110. Yethon JA, Heinrichs DE, Monteiro MA, Perry MB, Whitfield C (1998) Involvement of waa Y, waa Q, and waaP in the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane. J Biol Chem 273:26310–26316PubMedCrossRefGoogle Scholar
  111. Zhang L, Al-Hendy A, Toivanen P, Skurnik M (1993) Genetic organization and sequence of the rfb gene cluster of Yersinia enterocolitica serotype O:3: similarities to the dTDP-L-rhamnose biosynthesis pathway of Salmonella and to the bacterial polysaccharide transport systems. Mol Microbiol 9: 309–321PubMedCrossRefGoogle Scholar
  112. Zhang L, Toivanen P, Skurnik M (1996) The gene cluster directing O-antigen biosynthesis in Yersinia enterocolitica serotype O8: identification of the genes for mannose and galactose biosynthesis and the gene for the O-antigen polymerase. Microbiology 142:277–288PubMedCrossRefGoogle Scholar
  113. Zhang L, Radziejewska-Lebrecht J, Krajewska-Pietrasik D, Toivanen P, Skurnik M (1997) Molecular and chemical characterization of the lipopolysaccharide O-antigen and its role in the virulence of Yersinia enterocolitica serotype O8. Mol Microbiol 23:63–76PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • P. P. Reeves
  • L. Wang

There are no affiliations available

Personalised recommendations