Modeling and Simulation of Electrothermomechanical Coupling Phenomena in High Power Electronics

  • P. Böhm
  • Y. C. Gerstenmaier
  • R. H. W. Hoppe
  • Y. Iliash
  • G. Mazurkevitch
  • G. Wachutka
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 21)


High power electronic devices based on innovative semiconductor technology play a significant role in technical applications. A robust operating behavior of such devices can be achieved by an optimal design taking into account the presence of coupled physical effects

In this contribution, we focus on electrothermomechanical coupling phenomena in Integrated-High-Voltage Modules with housing and cooling mechanisms that are used as electric drives for high power electromotors. For the numerical solution of the underlying coupled systems of partial differential equations we consider efficient algorithmic tools such as domain decomposition techniques


Solder Joint Domain Decomposition Posteriori Error Finite Element Space Power Diode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Ben Belgacem and Y. Maday, “The mortar element method for three dimensional finite elements”, RAIRO M2AN 31, 289–302, (1997)zbMATHGoogle Scholar
  2. 2.
    D. Braess and W Dahmen, “Stability estimates of the mortar finite element method for 3-dimensional problems”, East-West J. Numer. Math. 6, 249–263, (1998)MathSciNetzbMATHGoogle Scholar
  3. 3.
    St. Dürndorfer, V. Gradinaru, R.H.W. Hoppe, E.-R. König, G. Schrag, and G. Wachutka, “Numerical simulation of microstructured semiconductor devices, transducers, and systems”, In: High Performance Scientific and Engineering Computing. Proc. “Int. FORTWIHR-Symposium”, Munich, March 1998 (H. Bungartz, F. Durst, and Chr. Zenger; eds.), pp. 309–323, Lecture Notes in Computational Science and Engineering, Vol. 8, Springer, Berlin-HeidelbergNew York, (1999)CrossRefGoogle Scholar
  4. 4.
    B. Engelmann, R.H.W. Hoppe, Y. Iliash, Y. Kuznetsov, Y. Vassilevski, and B. Wohlmuth, “Adaptive macro-hybrid finite element methods”, In: Proc. 2nd European Conference on Numerical Methods (ENUMATH 97), Heidelberg, Sept. 29 - Oct. 3, 1997 (Bock,H.G.,Brezzi,F.,Glowinski,R.,Kanschat,G.Kuznetsov,Y., Périaux,J., and Rannacher,R.;eds.), p. 294–302, World Scientific, Singapore, (1998)Google Scholar
  5. 5.
    B.Engelmann, R.H.W.Hoppe, Y.Iliash, Y.Kuznetsov, Y.Vassilevski, and B. Wohlmuth, “Adaptive finite element methods for domain decomposition on nonmatching grids”, In: “Parallel Solution of PDEs”, IMA Volume in Mathematics and its Applications, Vol. 120 (P. Bjorstad and M. Luskin; eds.), pp. 57–83, Springer, Berlin-Heidelberg-New York, (2000)Google Scholar
  6. 6.
    R.H.W. Hoppe, Y. Iliash, Y. Kuznetsov, Y. Vassilevski, and B. Wohlmuth, “Analysis and parallel implementation of adaptive mortar element methods”, East-West J. Numer. Math. 6, 223–248, (1998)MathSciNetzbMATHGoogle Scholar
  7. 7.
    R.H.W. Hoppe, Y. Iliash, and G. Mazurkevitch, “Domain decomposition methods in the design of high power electronic devices”, In: “Multifield Problems. State of the Art” (M. Sändig, W. Schiehlen, and W. Wendland; eds.), pp. 169–182, Springer, Berlin-Heidelberg-New York, (2000)Google Scholar
  8. 8.
    K.D. Kells, “General electrothermal semiconductor device simulation”, Hartung-Gorre, Konstanz, (1994)Google Scholar
  9. 9.
    K. Kells, K. Lilja, G. Wachutka, and W. Fichtner, “Detailed study of electrothermal effects in semiconductor power devices using multidimensional numerical simulation”, In: Verhandlg. DPG(VI) 29, HL-28.12, (1994)Google Scholar
  10. 10.
    K. Kells, S. Müller, W. Fichtner, and G. Wachutka, “Simulation of self-heating effects in a power p-i-n diode”, In: Simulation of Semiconductor Devices and Processes (SISDEP-93), Vol. 5 (S. Selberherr, H. Stippel, and E. Strasser; eds.), p. 41–48, (1993)CrossRefGoogle Scholar
  11. 11.
    S. Ramminger, G. Mitic, P. Türkes, and G. Wachutka, “Thermomechanical simulation of wire bonding joints in power modules”, In: Proc. 2nd Conf. on Modeling and Simulation of Microsystems, Sensors, and Actuators (MSM-99), San Juan, Puerto Rico, pp. 483–486, (1999)Google Scholar
  12. 12.
    R. Thalhammer, G. Deboy, W. Keilitz, U. Müller, and G. Wachutka, “Electrothermal effects in semiconductor power devices analyzed by numerical simulation and internal laser deflection measurements”, In: Proc. Int. Semiconductor Device Research Symp. (ISDRS-95), Charlottesville, U.S.A., pp. 51–54, (1995)Google Scholar
  13. 13.
    G.Wachutka, “Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling”, IEEE Trans. CAD Integr. Circuits and Syst. 9, 1141–1149, (1990)CrossRefGoogle Scholar
  14. 14.
    G.Wachutka, “Problem-oriented modeling of coupled physical effects in micro-transducers and electronic devices”, In: Proc. 20th Int. Conf. on Microelectronics (MIEL-95), Nis, Serbia, Vol. 2, p. 539–547, (1995)CrossRefGoogle Scholar
  15. 15.
    G. Wachutka, “The art of modeling coupled field effects in microdevices and microsystems”, In: Proc. 2nd Int. Conf. on Modeling and Simulation of Microsystems, Sensors, and Actuators (MSM-99), San Juan, Puerto Rico, p. 1419, (1999)Google Scholar
  16. 16.
    B. Wohlmuth, “Discretization Methods and Iterative Solvers Based on Domain Decomposition”, Lecture Notes in Computational Science and Engineering, Vol. 17, Springer, Berlin-Heidelberg-New York, (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • P. Böhm
    • 1
  • Y. C. Gerstenmaier
    • 1
  • R. H. W. Hoppe
    • 2
  • Y. Iliash
    • 2
  • G. Mazurkevitch
    • 2
  • G. Wachutka
    • 1
  1. 1.Munich University of TechnologyPhysics of ElectrotechnologyMunichGermany
  2. 2.University of AugsburgInstitute of MathematicsAugsburgGermany

Personalised recommendations