Advertisement

A Hybrid Direct/Iterative Algorithm for the Solution of Poisson’s Equation Based on the Schur Complement Method

  • H. J. Kaltenbach
  • A. Jäkel
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 21)

Abstract

An algorithm for efficient solution of large 3-D Poisson problems arising in the numerical simulation of the incompressible, unsteady Navier Stokes equations is presented. It is demonstrated that for a certain class of flows with onehomogeneouscoordinate direction an efficient load balancing on massively parallel machines can be achieved by simultaneous direct and iterative solution of 2-D Helmholtz problems. The use of the Schur complement method in conjunction with direct solution based on precomputed LU decomposition is capable to significantly reduce memory need and execution time

Keywords

Fast Fourier Transform Iterative Solution Direct Solution Core Memory Capacitance Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Swarztrauber P., Sweet R. (1989) Vector and parallel methods for the direct solution of Poisson’s equation. J Comp Appl Math 27:241–263MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Akselvoll K., Moin P. (1996) An efficient method for temporal integration of the Navier-Stokes equations in confined axisymmetric geometries. J Comp Phys 125:454MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Voke P., Yang Z. (1996) Computational methods for large-eddy simulation in 2D complex geometries. In: M. Deville I.R. S. Gavrilakis (Ed.) NNFM 53: Computation of three-dimensional complex flowsGoogle Scholar
  4. 4.
    Kaltenbach H.J., Fatica M., et al. (1999) Study of flow in a planar asymmetric diffuser using large eddy simulation. J Fluid Mech 390:151–185zbMATHCrossRefGoogle Scholar
  5. 5.
    Crawford C., Evangelinos C., et al. (1996) Parallel benchmarks of turbulence in complex geometries. Computers & Fluids 25(7):677–698zbMATHCrossRefGoogle Scholar
  6. 6.
    Golub G., Ortega J.M. (1993) Scientific computing - An introduction with parallel computing. Academic Press, San DiegozbMATHGoogle Scholar
  7. 7.
    Duff I.S., Erisman A.M., et al. (1986) Direct methods for sparse matrices. Oxford University Press, OxfordzbMATHGoogle Scholar
  8. 8.
    Kaltenbach H.J., Janke G. (2000) Direct numerical simulation of flow separation behind a swept, rearward-facing step at ReH = 3000. Phys Fluids 12:2320–2337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • H. J. Kaltenbach
    • 1
  • A. Jäkel
    • 2
  1. 1.Sekr. HF 1, Hermann-Föttinger-InstitutTechnische Universität BerlinBerlin
  2. 2.Technische Universität BerlinFachbereichMathematik

Personalised recommendations