Advertisement

Virtual-Reality Based Interactive Exploration of Multiresolution Data

  • Oliver Kreylos
  • E. Wes Bethel
  • Terry J. Ligocki
  • Bernd Hamann
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

We describe a system supporting the interactive exploration of threedimensional scientific data sets in a virtual reality (VR) environment. This system aids a scientist in understanding a data set by interactively placing and manipulating visualization primitives, e. g., isosurfaces or streamlines, and thereby finding features in the data and understanding its overall structure.

We discuss how the requirement of interactivity influences the architecture of the visualization system, and how to adapt standard visualization techniques to work under real-time interaction constraints.

Though we have implemented our visualization system to work with multiple types of data sets structures — cartesian, tetrahedral, curvilinear-hexahedral and adaptive mesh refinement (AMR) — we will focus on AMR grids and show how their inherent multiresolution structure is useful for interactive visualization.

Keywords

Virtual Reality Query Point Input Device Cartesian Grid Visualization System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, M., and Colella, P., Local Adaptive Mesh Refinement for Shock Hydrodynamics, in: Journal of Computational Physics, 82:64–84, May 1989. Lawrence Livermore Laboratory Report No. UCRL-97196Google Scholar
  2. 2.
    Weber, G.H., Kreylos, O., Ligocki, T. J., Shalf J. M., Hagen H., Hamann, B., and Joy, K. I., Extraction of Crack-Free Isosurfaces from Adaptive Mesh Refinement Data, Proceedings of the Joint EUROGRAPHICS and IEEE TCVG Symposium on Visualization, Ascona, Switzerland, May 28-31, 2001, Springer Verlag, Wien, Austria, May 2001Google Scholar
  3. 3.
    Helman, J. L., and Hesselink, L., Representation and Display of Vector Field Topology in Fluid Flow Data Sets, in: Computer 22(8) (1989), pp. 27–36CrossRefGoogle Scholar
  4. 4.
    Ueng, S.-K., Sikorski, C., and Ma, K.-L., Efficient Streamline, Streamribbon, and Streamtube Constructions on Unstructured Grids, in: IEEE Transactions on Visualization and Computer Graphics 2(2) (1996), pp. 100–110CrossRefGoogle Scholar
  5. 5.
    Bryson, S. and Levit, C., The Virtual Windtunnel: An Environment for the Exploration of Three-Dimensional Unsteady Flowsz, in: Proc. of Visualization’ 91 (1991), IEEE Computer Society Press, Los Alamitos, CA, pp. 17–24Google Scholar
  6. 6.
    Meyer, T. and Globus, A., Direct Manipulation of Isosurfaces and Cutting Planes in Virtual Environments, technical report CS-93-54 (1993), Brown University, Providence, RIGoogle Scholar
  7. 7.
    Drebin, R.A., Carpenter, L. and Hanrahan, P., Volume Rendering, in: Proc. SIGGRAPH’ 88 (1988), pp. 65–74Google Scholar
  8. 8.
    Bloomenthal, J., Polygonization of Implicit Surfaces, in: Computer Aided Geometric Design 5(4) (1988), pp. 341–356MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lorensen, W. E. and Cline, H. E., Marching Cubes: A High Resolution 3D Surface Construction Algorithm, in: Proc. of SIGGRAPH’ 87 (1987), pp. 163–169Google Scholar
  10. 10.
    Nielson, G. M., and Hamann, B., The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes, in: Proc. of Visualization’ 91, (1991), IEEE Computer Society Press, Los Alamitos, CA, pp. 83–91CrossRefGoogle Scholar
  11. 11.
    Press, W.H., Teukolsky, S.A., Vetterling, W. T., and Flannery, B.P. Numerical Recipes in C, 2nd ed. C (1992), Cambridge University Press, Cambridge, MA 225–241zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Oliver Kreylos
    • 1
  • E. Wes Bethel
    • 2
  • Terry J. Ligocki
    • 3
  • Bernd Hamann
    • 1
  1. 1.Center for Image Processing and Integrated Computing (CIPIC), Department of Computer ScienceUniversity of California, DavisDavisUSA
  2. 2.National Energy Research and Scientific Computing Center (NERSC), Ernest Orlando Lawrence Berkeley National LaboratoryApplied Numerical Algorithms GroupBerkeleyUSA
  3. 3.National Energy Research and Scientific Computing Center (NERSC) Ernest Orlando Lawrence Berkeley National LaboratoryVisualization GroupBerkeleyUSA

Personalised recommendations