• J. A. Mahoney
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 158)


The macrophage, as a gatekeeper to both the innate and acquired immune systems, has great potential as a therapeutic target for such diverse human disease states as bacterial and viral infection, autoimmunity, inflammatory diseases, and cancer. The phenotype of macrophages in different tissues varies markedly between tissues. While this characteristic creates technical challenges in terms of isolation and characterization of resident tissue macrophages, it opens the possibility of targeting individual tissue-specific macrophage populations for pharmacologic intervention. The proteases are among the most numerous and abundant of enzyme classes, representing 1%–4% of all proteins encoded by eukaryotic genomes. Proteases are particularly abundant in macrophages, where they are critical players in many key functions of the macrophage, such as degradation of exogenous, potentially pathogenic proteins; digestion of both foreign and self proteins into peptides for presentation by MHC class I and II; and functional regulation of target proteins, for example by removal of a regulatory domain or a transmembrane anchor. This chapter reviews some of the proteases expressed in macrophages, and discusses what functional roles have been shown for, or postulated for, these enzymes. The enzymes discussed here are divided into two main groups: ectoproteases, which cleave amino acids from either end of a protein or peptide, and endoproteases, which cleave proteins at internal sites. Examples are given illustrating the actions of proteases within the macrophage, at the cell surface, and after secretion into the extracellular milieu.


Aminopeptidase Angiotensin converting enzyme Carboxypeptidase Caspase Cathepsin CPVL Matrix metalloprotease TNF-? converting enzyme 


  1. Amour A, Slocombe PM, Webster A, Butler M, Knight CG, Smith BJ, Stephens PE, Shelley C, Hutton M, Knauper V, Docherty AJ, Murphy G (1998) TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435: 39–44PubMedCrossRefGoogle Scholar
  2. Andreesen R, Gadd S, Costabel U, Leser HG, Speth V, Cesnik B, Atkins RC (1988) Human macrophage maturation and heterogeneity: restricted expression of late differentiation antigens in situ. Cell Tissue Res 253: 271–279PubMedCrossRefGoogle Scholar
  3. Andreesen R, Brugger W, Thomssen C, Rehm A, Speck B, Lohr GW (1989) Defective monocyte-to-macrophage maturation in patients with aplastic anemia. Blood 74: 2150–2156PubMedGoogle Scholar
  4. Andreesen R, Brugger W, Kunze R, Stille W, von Briesen H (1990) Defective monocyte to macrophage maturation in human immunodeficiency virus infection. Res Virol 141: 217–224PubMedCrossRefGoogle Scholar
  5. Barlaam B, Bird TG, Lambert-Van Der Brempt C, Campbell D, Foster SJ, Maciewicz R (1999) New alpha-substituted succinate-based hydroxamic acids as TNFalpha convertase inhibitors. J Med Chem 42: 4890–4908PubMedCrossRefGoogle Scholar
  6. Belaaouaj A, Shipley JM, Kobayashi DK, Zimonjic DB, Popescu N, Silverman GA, Shapiro SD (1995) Human macrophage metalloelastase. Genomic organization, chromosomal location, gene linkage, and tissue-specific expression. J Biol Chem 270: 14568–14575PubMedCrossRefGoogle Scholar
  7. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor- alpha from cells. Nature 385: 729– 733PubMedCrossRefGoogle Scholar
  8. Buhling F, Reisenauer A, Gerber A, Kruger S, Weber E, Bromme D, Roessner A, Ansorge S, Weite T, Rocken C (2001) Cathepsin K-a marker of macrophage differentiation? J Pathol 195: 375–382PubMedCrossRefGoogle Scholar
  9. Buxbaum JD, Liu KN, Luo Y, Slack JL, Stocking KL, Peschon JJ, Johnson RS, Castner BJ, Cerretti DP, Black RA (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-seeretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 273: 27765–27767PubMedCrossRefGoogle Scholar
  10. Chen J, Streb JW, Maltby KM, Kitchen CM, Miano JM (2001) Cloning of a novel retinoid- inducible serine carboxypeptidase from vascular smooth muscle cells. J Biol Chem 276: 34175–34181PubMedCrossRefGoogle Scholar
  11. Constantinescu CS, Goodman DB, Ventura ES (1998) Captopril and lisinopril suppress production of interleukin-12 by human peripheral blood mononuclear cells. Immunol Lett 62: 25–31PubMedCrossRefGoogle Scholar
  12. Diet F, Pratt RE, Berry GJ, Momose N, Gibbons GH, Dzau VJ (1996) Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 94: 2756–2767PubMedCrossRefGoogle Scholar
  13. Douglas WW (1985) Polypeptides-Angiotensin, Plasma Kinins, and Others. In: Gilman AG, Goodman LS, Rall TW, Murad F (eds) Goodman and Gilman’s the pharmacolog- ical basis of therapeutics. MacMillan Publishing Co., New York, 639–659Google Scholar
  14. Dzau VJ, Bernstein K, Celermajer D, Cohen J, Dahlof B, Deanfield J, Diez J, Drexler H, Ferrari R, van Gilst W, Hansson L, Hornig B, Husain A, Johnston C, Lazar H, Lonn E, Luscher T, Mancini J, Mimran A, Pepine C, Rabelink T, Remme W, Ruilope L, Ruzic- ka M, Schunkert H, Swedberg K, Unger T, Vaughan D, Weber M (2001) The relevance of tissue angiotensin-converting enzyme: manifestations in mechanistic and end- point data. Am J Cardiol 88: 1L–20LPubMedCrossRefGoogle Scholar
  15. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68: 383–424PubMedCrossRefGoogle Scholar
  16. Galjart NJ, Gillemans N, Harris A, van der Horst GT, Verheijen FW, Galjaard H, d’Azzo A (1988) Expression of cDNA encoding the human “protective protein” associated with lysosomal beta-galactosidase and neuraminidase: homology to yeast proteases. Cell 54: 755–764PubMedCrossRefGoogle Scholar
  17. Galjart NJ, Morreau H, Willemsen R, Gillemans N, Bonten EJ, d’Azzo A (1991) Human lysosomal protective protein has cathepsin A-like activity distinct from its protective function. J Biol Chem 266: 14754–14762PubMedGoogle Scholar
  18. Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, Quintal L, Sekut L, Talanian R, Paskind M, Wong W, Kamen R, Tracey D, Allen H (1997) Caspase-1 pro- cesses IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma produc- tion. Nature 386: 619–623PubMedCrossRefGoogle Scholar
  19. Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, Hayashi N, Higashino K, Okamura H, Nakanishi K, Kurimoto M, Tanimoto T, Flavell RA, Sato V, Harding MW, Livingston DJ, Su MS (1997) Activation of interferon-gamma inducing factor mediat- ed by interleukin- lbeta converting enzyme. Science 275: 206–209PubMedCrossRefGoogle Scholar
  20. Gulick RM, Mellors JW, Havlir D, Eron JJ, Gonzalez C, McMahon D, Richman DD, Valentine FT, Jonas L, Meibohm A, Emini EA, Chodakewitz JA (1997) Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 337: 734–739PubMedCrossRefGoogle Scholar
  21. Hahn CN, del Pilar MM, Zhou XY, Mann LW, d’Azzo A (1998) Correction of murine galactosialidosis by bone marrow-derived macrophages overexpressing human protective protein/cathepsin A under control of the colony-stimulating factor-1 receptor promoter. Proc Natl Acad Sci U S A 95: 14880–14885PubMedCrossRefGoogle Scholar
  22. Hammer SM, Squires KE, Hughes MD, Grimes JM, Demeter LM, Currier JS, Eron JJ, Jr., Feinberg JE, Balfour HH, Jr., Deyton LR, Chodakewitz JA, Fischl MA (1997) A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med 337: 725–733PubMedCrossRefGoogle Scholar
  23. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277: 2002–2004PubMedCrossRefGoogle Scholar
  24. Hernandez-Presa M, Bustos C, Ortego M, Tunon J, Renedo G, Ruiz-Ortega M, Egido J (1997) Angiotensin-Converting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 95: 1532–1541PubMedCrossRefGoogle Scholar
  25. Hoppe G, O’Neil J, Hoff HF (1994) Inactivation of lysosomal proteases by oxidized low density lipoprotein is partially responsible for its poor degradation by mouse peritoneal macrophages. J Clin Invest 94: 1506–1512PubMedCrossRefGoogle Scholar
  26. Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17: 177–181PubMedCrossRefGoogle Scholar
  27. Jackman HL, Tan FL, Tamei H, Beurling-Harbury C, Li XY, Skidgel RA, Erdos EG (1990) A peptidase in human platelets that deamidates tachykinins. Probable identity with the lysosomal “protective protein”. J Biol Chem 265: 11265–11272PubMedGoogle Scholar
  28. Kim YM, Talanian RV, Li J, Billiar TR (1998) Nitric oxide prevents IL-lbeta and IFN-gam-ma-inducing factor (IL-18) release from macrophages by inhibiting caspase-1 (IL-1beta-converting enzyme). J Immunol 161: 4122–4128PubMedGoogle Scholar
  29. Kuroda T, Yoshinari M, Okamura K, Okazawa K, Ikenoue H, Sato K, Fujishima M (1994) Effects of lysosomal protease inhibitors on the degradation of acetylated low density lipoprotein in cultured rat peritoneal macrophages. J Atheroscler Thromb 1: 41–44PubMedGoogle Scholar
  30. Larsen SL, Pedersen LO, Buus S, Stryhn A (1996) Tcell responses affected by aminopeptidase N (CD13)-mediated trimming of major histocompatibility complex class II-bound peptides. J Exp Med 184: 183–189PubMedCrossRefGoogle Scholar
  31. Leimig T, Mann L, Martin MP, Bonten E, Persons D, Knowles J, Allay JA, Cunningham J, Nienhuis AW, Smeyne R, d’Azzo A (2002) Functional amelioration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells. Blood 99: 3169–3178PubMedCrossRefGoogle Scholar
  32. Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman L, Salfeld J, . (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80: 401–411PubMedCrossRefGoogle Scholar
  33. Linehan SA, Martinez-Pomares L, Gordon S (2000) Mannose receptor and scavenger receptor: two macrophage pattern recognition receptors with diverse functions in tissue homeostasis and host defense. Adv Exp Med Biol 479: 1–14PubMedCrossRefGoogle Scholar
  34. Mahoney JA, Ntolosi B, DaSilva RP, Gordon S, McKnight AJ (2001) Cloning and characterization of CPVL, a novel serine carboxypeptidase, from human macrophages. Genomics 72: 243–251PubMedCrossRefGoogle Scholar
  35. Martinez-Pomares L, Gordon S (1999) Potential role of the mannose receptor in antigen transport. Immunol Lett 65: 9–13PubMedCrossRefGoogle Scholar
  36. Martinez-Pomares L, Kosco-Vilbois M, Darley E, Tree P, Herren S, Bonnefoy JY, Gordon S (1996) Fc chimeric protein containing the cysteine-rich domain of the murine man-nose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus and to germinal centers. J Exp Med 184: 1927–1937PubMedCrossRefGoogle Scholar
  37. Martinez-Pomares L, Crocker PR, Da Silva R, Holmes N, Colominas C, Rudd P, Dwek R, Gordon S (1999) Cell-specific glycoforms of sialoadhesin and CD45 are counter-receptors for the cysteine-rich domain of the mannose receptor. J Biol Chem 274: 35211–35218PubMedCrossRefGoogle Scholar
  38. Martinez-Pomares L, Mahoney JA, Kaposzta R, Linehan SA, Stahl PD, Gordon S (1998) A functional soluble form of the murine mannose receptor is produced by macrophages in vitro and is present in mouse serum. J Biol Chem 273: 23376–23380PubMedCrossRefGoogle Scholar
  39. Mitsuhashi H, Nonaka T, Hamamura I, Kishimoto T, Muratani E, Fujii K (1999) Pharmacological activities of TEI-8362, a novel inhibitor of human neutrophil elastase. Br J Pharmacol 126: 1147–1152PubMedCrossRefGoogle Scholar
  40. Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL, Chen WJ, Clay WC, Didsbury JR, Hassler D, Hoffman CR, Kost TA, Lambert MH, Leesnitzer MA, McCauley P, McGeehan G, Mitchell J, Moyer M, Pahel G, Rocque W, Overton LK, Schoenen F, Seaton T, Su JL, Becherer JD, . (1997) Cloning of a disintegrin metallo-proteinase that processes precursor tumour-necrosis factor-alpha. Nature 385: 733–736PubMedCrossRefGoogle Scholar
  41. Nagase H, Woessner JF, Jr. (1999) Matrix metalloproteinases. J Biol Chem 274: 21491–21494PubMedCrossRefGoogle Scholar
  42. Napoleone E, Di Santo A, Camera M, Tremoli E, Lorenzet R (2000) Angiotensin-Converting enzyme inhibitors downregulate tissue factor synthesis in monocytes. Circ Res 86: 139–143PubMedCrossRefGoogle Scholar
  43. Oh LY, Larsen PH, Krekoski CA, Edwards DR, Donovan F, Werb Z, Yong VW (1999) Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes. J Neurosci 19: 8464–8475PubMedGoogle Scholar
  44. Olsen J, Cowell GM, Konigshofer E, Danielsen EM, Moller J, Laustsen L, Hansen OC, Welinder KG, Engberg J, Hunziker W, . (1988) Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA. FEBS Lett 238: 307–314PubMedCrossRefGoogle Scholar
  45. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, Russell WE, Castner BJ, Johnson RS, Fitzner JN, Boyce RW, Nelson N, Kozlosky CJ, Wolfson MF, Rauch CT, Cerretti DP, Paxton RJ, March CJ, Black RA (1998) An essential role for ectodo- main shedding in mammalian development. Science 282: 1281–1284PubMedCrossRefGoogle Scholar
  46. Pshezhetsky AV (1998) Lysosomal carboxypeptidase A. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Academic Press, San Diego, 393–398Google Scholar
  47. Rawlings ND, O’Brien E, Barrett AJ (2002) MEROPS: the protease database. Nucleic Acids Res 30: 343–346PubMedCrossRefGoogle Scholar
  48. Rehli M, Krause SW, Kreutz M, Andreesen R (1995) Carboxypeptidase M is identical to the MAX.1 antigen and its expression is associated with monocyte to macrophage differentiation. J Biol Chem 270: 15644–15649PubMedCrossRefGoogle Scholar
  49. Rehli M, Krause SW, Andreesen R (2000) The membrane-bound ectopeptidase CPM as a marker of macrophage maturation in vitro and in vivo. Adv Exp Med Biol 477: 205–216PubMedCrossRefGoogle Scholar
  50. Reilly RA (1985) Anticoagulant, antithrombotic, and thrombolytic drugs. In: Gilman AG, Goodman LS, Rall TW, Murad F (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. MacMillan Publishing Co., New York, 1338–1362Google Scholar
  51. Rovida E, Paccagnini A, Del Rosso M, Peschon J, Dello SP (2001) TNF-alpha-converting enzyme cleaves the macrophage colony-stimulating factor receptor in macrophages undergoing activation. J Immunol 166: 1583–1589PubMedGoogle Scholar
  52. Shapiro SD, Kobayashi DK, Ley TJ (1993) Cloning and characterization of a unique elas-tolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem 268: 23824–23829PubMedGoogle Scholar
  53. Shi GP, Villadangos JA, Dranoff G, Small C, Gu L, Haley KJ, Riese R, Ploegh HL, Chapman HA (1999) Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 10: 197–206PubMedCrossRefGoogle Scholar
  54. Shi GP, Bryant RA, Riese R, Verhelst S, Driessen C, Li Z, Bromme D, Ploegh HL, Chapman HA (2000) Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages. J Exp Med 191: 1177–1186PubMedCrossRefGoogle Scholar
  55. Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD (1996) Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci U S A 93: 3942–3946PubMedCrossRefGoogle Scholar
  56. Sinha S, Watorek W, Karr S, Giles J, Bode W, Travis J (1987) Primary structure of human neutrophil elastase. Proc Natl Acad Sci U S A 84: 2228–2232PubMedCrossRefGoogle Scholar
  57. Skidgel RA, Davis RM, Tan F (1989) Human carboxypeptidase M. Purification and characterization of a membrane-bound carboxypeptidase that cleaves peptide hormones. J Biol Chem 264: 2236–2241PubMedGoogle Scholar
  58. Soderberg C, Giugni TD, Zaia JA, Larsson S, Wahlberg JM, Moller E (1993) CD13 (human aminopeptidase N) mediates human cytomegalovirus infection. J Virol 67: 6576–6585PubMedGoogle Scholar
  59. Soderberg C, Larsson S, Rozell BL, Sumitran-Karuppan S, Ljungman P, Moller E (1996) Cytomegalovirus-induced CD13-specific autoimmunity-a possible cause of chronic graft-vs-host disease. Transplantation 61: 600–609PubMedCrossRefGoogle Scholar
  60. Solomon KA, Pesti N, Wu G, Newton RC (1999) Cutting edge: a dominant negative form of TNF-alpha converting enzyme inhibits proTNF and TNFRII secretion. J Immunol 163: 4105–4108PubMedGoogle Scholar
  61. Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G, Corvol P (1988) Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A 85: 9386–9390PubMedCrossRefGoogle Scholar
  62. Tan F, Chan SJ, Steiner DF, Schilling JW, Skidgel RA (1989) Molecular cloning and sequencing of the cDNA for human membrane-bound carboxypeptidase M. Comparison with carboxypeptidases A, B, H, and N. J Biol Chem 264: 13165–13170PubMedGoogle Scholar
  63. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, . (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356: 768–774PubMedCrossRefGoogle Scholar
  64. Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G (2000) Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO- alpha and leaves RANTES and MCP-2 intact. Blood 96: 2673–2681PubMedGoogle Scholar
  65. Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK, Brain JD, Accurso FJ, Henson PM (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109: 661–670PubMedGoogle Scholar
  66. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93: 411–422PubMedCrossRefGoogle Scholar
  67. Weber M, Uguccioni M, Baggiolini M, Clark-Lewis I, Dahinden CA (1996) Deletion of the NH2-terminal residue converts monocyte chemotactic protein 1 from an activator of basophil mediator release to an eosinophil chemoattractant. J Exp Med 183: 681–685PubMedCrossRefGoogle Scholar
  68. Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 264: 17213–17221PubMedGoogle Scholar
  69. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV (1992) Human aminopeptidase N is a receptor for human Coronavirus 229E. Nature 357: 420–422PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. A. Mahoney
    • 1
  1. 1.Department of MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations