Advertisement

Interacting Agents and Continuous Opinions Dynamics

  • G. Weisbuch
  • G. Deffuant
  • F. Amblard
  • J.-P. Nadal
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 521)

Abstract

We present a model of opinion dynamics in which agents adjust continuous opinions as a result of random binary encounters whenever their difference in opinion is below a given threshold. High thresholds yield convergence of opinions towards an average opinion, whereas low thresholds result in several opinion clusters. The model is further generalised to threshold heterogeneity, adaptive thresholds and binary strings of opinions.

Keywords

Binary String Convergence Time Interact Agent Threshold Dynamic Constant Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, B. W. (1994) Increasing Returns and Path Dependence in the Economy. University of Michigan Press, Ann Arbor, MIGoogle Scholar
  2. 2.
    Axelrod R. (1997) Disseminating cultures. In The Complexity of Cooperation, Axelrod, R., 145–177, Princeton University PressGoogle Scholar
  3. 3.
    Chatterjee S. and Seneta E., (1977) Towards consensus: some convergence theorems on repeated averaging. J. Appl. Prob., 14:89–97CrossRefGoogle Scholar
  4. 4.
    Cohen J. E., Hajnal J. and Newman C.M. (1986) Approaching consensus can be delicate when positions harden. Stochastic Processes and their Applications, 22:315–322CrossRefGoogle Scholar
  5. 5. G. Deffuant, D. Neau, F. Amblard and G. Weisbuch (2000) Mixing beliefs among interacting agents. Advances in Complex Systems, 3:87–98CrossRefGoogle Scholar
  6. 6.
    Föllmer H. (1974) Random Economies with Many Interacting Agents. Journal of Mathematical Economics, 1:51–62CrossRefGoogle Scholar
  7. 7.
    Galam S., Y. Gefen and Shapir Y., (1982) Sociophysics: A mean behavior model for the process of strike. Math. Journal of Sociology, 9:1–13CrossRefGoogle Scholar
  8. 8.
    Galam S. and Moscovici S., (1991) Towards a theory of collective phenomena: consensus and attitude changes in groups. European Journal of Social Psychology, 21:49–74CrossRefGoogle Scholar
  9. 9. Hegselmann R. and Krause U. (2002) Opinion formation under bounded confidence. Proceedings of the Simsoc5 conference, to appear in Journal of Artificial Societies and Social SimulationGoogle Scholar
  10. 10.
    Henrich J., Boyd R., Bowles S., Camerer C., Fehr E., Gintis H., and McElreath R. (2001) In Search of Homo Economicus: Behavioral Experiments in 15 Small-Scale Societies, American Economic Review P & P, 91:73–78CrossRefGoogle Scholar
  11. 11.
    Higgs P.G. and Derrida, B. (1991) Stochastic models for species formation in evolving populations. J. Phys. A: Math. Gen., 24:985–991CrossRefGoogle Scholar
  12. 12.
    Krause U. (2000) A discrete non-linear and non-autonomous model of consensus formation. In Communications in Difference Equations, Elaydi et al. (eds.), Gordon and Breach pub.Google Scholar
  13. 13.
    IMAGES (2001) Improving Agri-Environmental Policies: A Simulation Approach to the Role of the Cognitive Properties of Farmers and Institutions. Web site http://www.lisc.clermont.cemagref.fr/ImagesProject/
  14. 14.
    Laslier, J.F. (1989) Diffusion d’information et évaluations séquentielles. Economie appliquée, 42:155–170Google Scholar
  15. 15.
    Latané, B. and Nowak, A. (1997) Self-Organizing Social Systems: Necessary and Sufficient Conditions for the Emergence of Clustering, Consolidation and Continuing Diversity. In Progress in Communication Sciences, Barnett, G. A. and Boster, F. J. (eds.), 43–74Google Scholar
  16. 16.
    Neau, D (2000) Révisions des croyances dans un système d’agents en interaction. Rapport d’option de l’école polytechnique, available at http://www.lps.ens.fr/~weisbuch/rapneau.ps
  17. 17.
    Orléan A. (1995) Bayesian Interactions and Collective Dynamics of Opinions: Herd Behavior and Mimetic Contagion. Journal of Economic Behavior and Organization, 28:257–274CrossRefGoogle Scholar
  18. 18.
    Stone M. (1961) The opinion Pool. Ann. of Math. Stat., 32:1339–1342CrossRefGoogle Scholar
  19. 19.
    Weisbuch G. and Boudjema G. (1999) Dynamical aspects in the Adoption of Agri-Environmental Measures. Adv. Complex Systems, 2:11–36CrossRefGoogle Scholar
  20. 20.
    Weisbuch G., Deffuant D., Amblard F. and Nadal J.P. (2001) Interacting Agents and Continuous Opinions Dynamics. Cond-mat/0111494, available at xxx.lanl.gov, and Santa Fe Institute Working Paper 01-11-072Google Scholar
  21. 21.
    Young H. P., and Burke M. A. (2000) Competition and Custom in Economic Contracts: A Case Study of Illinois Agriculture. Am. Econ. Rev., 91:559–573CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • G. Weisbuch
    • 1
  • G. Deffuant
    • 2
  • F. Amblard
    • 2
  • J.-P. Nadal
    • 1
  1. 1.Laboratoire de Physique Statistique de l’Ecole Normale SupérieureParis Cedex 5France
  2. 2.Laboratoire d’Ingénierie pour les Systèmes Complexes (LISC)Cemagref - Grpt de Clermont-FerrandAubière CedexFrance

Personalised recommendations