Advertisement

The Dirac Determinant of Spherical Space Forms

  • Christian Bär
  • Sven Schopka

Summary

The ζ-regularized determinants of the Dirac operator and of its square are computed on spherical space forms. On S 2 the determinant of Dirac operators twisted by a complex line bundle is also calculated.

Keywords

Dirac Operator Spin Structure Constant Sectional Curvature Chern Number Spinor Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bär, C. (1991): Das Spektrum von Dirac-Operatoren. Bonner Math. Schr., 217 Google Scholar
  2. 2.
    Bär, C. (1996): The Dirac operator on space forms of positive curvature. J. Math. Soc. Japan, 48, 69–83MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bär, C. (2000): Dependence of the Dirac Spectrum on the Spin Structure. Séminaires et Congrlès, 4, 17–33Google Scholar
  4. 4.
    Branson, T. (1993): The Functional Determinant. Global Analysis Research Center Lecture Note Series, Number 4, Seoul National UniversityGoogle Scholar
  5. 5.
    Branson, T., Ørsted, B. (1991): Explicit functional determinants in four dimensions. Proc. Am. Math. Soc, 113. 669–682zbMATHCrossRefGoogle Scholar
  6. 6.
    Bunke, U., Olbrich, M. (1995): Selberg Zeta and Theta Functions. Akademie Verlag, BerlinzbMATHGoogle Scholar
  7. 7.
    Camporesi, R., Higuchi, A. (1996): On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces. J. Geom. Phys., 20, 1–18MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cisneros-Molina, J.L. (2001): The 77-invariant of twisted Dirac operators of S 3/Γ. Geom. Dedicata, 84, 207–228MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gilkey, P. (1984): Invariance theory, the heat equation and the Atiyah-Singer index theorem. Publish or Perish, Wilmington, DelawareGoogle Scholar
  10. 10.
    Gilkey, P. (1989): The geometry of sperical space form groups. World Scientific, SingaporeGoogle Scholar
  11. 11.
    Goette, S. (1997): Äquivariante η-Invarianten homogener Räume. Shaker Verlag, AachenGoogle Scholar
  12. 12.
    Gradstein, I.S., Ryshik, I.M. (1981): Tables of series, products and integrals. Harri Deutsch, FrankfurtGoogle Scholar
  13. 13.
    Gursky, M. (1997): Uniqueness of the Functional Determinant. Commun. Math. Phys., 189. 655–665MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lawson, H.B., Michelsohn, M.-L. (1989): Spin geometry. Princeton University Press, PrincetonzbMATHGoogle Scholar
  15. 15.
    Onofri, E. (1982): On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys., 86, 321–326MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Schopka, S. (2001): Anomalies in quantum field theory and determinants of elliptic operators. Diplomarbeit, Universität Hamburg, HamburgGoogle Scholar
  17. 17.
    Schwarz, A.S. (1993): Quantum field theory and topology. Grundlehren 307, Springer-Verlag, BerlinGoogle Scholar
  18. 18.
    Sulanke, S. (1979): Berechnung des Spektrums des Quadrates des Dirac-Operators auf der Sphäre. Dissertation, HU Berlin, BerlinGoogle Scholar
  19. 19.
    Trautman, A. (1995): The Dirac operator on hypersurfaces. Acta Phys. Polon. B, 26, 1283–1310MathSciNetzbMATHGoogle Scholar
  20. 20.
    Wojciechowski, K.P. (1999): Heat equation and spectral geometry. Lecture given at the Summer School on Geometric Methods in Quantum Field Theory, http://wwwlma.univ-bpclermont.fr/manifestation/vdl/vdl99.html, Villa de Leyva
  21. 21.
    Weisberger, W.I. (1987): Normalization of the path integral measure and the coupling constant for bosonic strings. Nucl. Phys. B, 284, 171–200MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Christian Bär
    • 1
  • Sven Schopka
    • 1
  1. 1.FB MathematikUniversität HamburgHamburgGermany

Personalised recommendations