Are Your Polyhedra the Same as My Polyhedra?

  • Branko Grünbaum
Part of the Algorithms and Combinatorics book series (AC, volume 25)


“Polyhedron” means different things to different people. There is very little in common between the meaning of the word in topology and in geometry. But even if we confine attention to geometry of the 3-dimensional Euclidean space-as we shall do from now on -“polyhedron” can mean either a solid (as in “Platonic solids”, convex polyhedron, and other contexts), or a surface (such as the polyhedral models constructed from cardboard using “nets”, which were introduced by Albrecht Dürer [[17]] in 1525, or, in a more modern version, by Aleksandrov [[1]]), or the 1-dimensional complex consisting of points (“vertices”) and line-segments (“edges”) organized in a suitable way into polygons (“faces”) subject to certain restrictions (“skeletal polyhedra”, diagrams of which have been presented first by Luca Pacioli [[44]] in 1498 and attributed to Leonardo da Vinci). The last alternative is the least usual one-but it is close to what seems to be the most useful approach to the theory of general polyhedra. Indeed, it does not restrict faces to be planar, and it makes possible to retrieve the other characterizations in circumstances in which they reasonably apply: If the faces of a “surface” polyhedron are simple polygons, in most cases the polyhedron is unambiguously determined by the boundary circuits of the faces. And if the polyhedron itself is without selfintersections, then the “solid” can be found from the faces. These reasons, as well as some others, seem to warrant the choice of our approach.


Distinct Vertex Combinatorial Structure Regular Polygon Combinatorial Type Klein Bottle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Aleksandrov, Convex Polyhedra. [In Russian]. Moscow 1950. German translation: A. D. Alexandrow, Konvexe Polyeder, Akademie-Verlag, Berlin 1958.Google Scholar
  2. 2.
    E. R. Berlekamp, E. N. Gilbert and F. W. Sinden, A polygon problem. Amer. Math. Monthly 72 (1965), pp. 233–241; reprinted in Selected Papers on Algebra, Mathematical Association of America, Washington, D.C., 1977.Google Scholar
  3. 3.
    M. Brückner, Vielecke und Vielflache. Theorie und Geschichte. Teubner, Leipzig 1900.zbMATHGoogle Scholar
  4. 4.
    M. Brückner, Über die diskontinuierlichen and nicht-konvexen gleicheckig-gleichflächigen Polyeder. Verh. des dritten Internat. Math.-Kongresses Heidelberg 1904. Teubner, Leipzig 1905, pp. 707–713.Google Scholar
  5. 5.
    [5] M. Brückner, Über die gleicheckig-gleichflächigen, diskontinuirlichen und nichkonvexen Polyeder. Nova Acta Leop. 86 (1906), No. 1, pp. 1–348 + 29 plates.Google Scholar
  6. 6.
    [6] M. Brückner, Zur Geschichte der Theorie der gleicheckig-gleichflächigen Polyeder. Unterrichtsblätter für Mathematik und Naturwissenschaften, 13 (1907), 104–110, 104–110 + plate.Google Scholar
  7. 7.
    A. L. Cauchy, Recherches sur les poly¨¦dres; Premier m¨¦moire. J. École Poly-tech. 9 (1813), 68–98. German translation by R. Haußner, with comments, as “Abhandlung Über die Vielecke und Vielflache”. Pages 68–98 and 68–98 in Abhandlungen Über die regelm¡§aßigen Sternkörper, Ostwald’s Klassiker der exakten Wissenschaften, Nr. 151. Engelmann, Leipzig 1906.Google Scholar
  8. 8.
    H. S. M. Coxeter, Regular skew polyhedra in three and four dimensions. Proc. London Math. Soc. (2) 43 (1937), 33–62.CrossRefGoogle Scholar
  9. 9.
    H. S. M. Coxeter, Regular Polytopes. 3rd ed. Dover, New York 1973.Google Scholar
  10. 10.
    H. S. M. Coxeter and B. Grünbaum, Face-transitive polyhedra with rectangular faces. Math. Reports Acad. Sci. Canada 20 (1998), 16–21.zbMATHGoogle Scholar
  11. 11.
    H. S. M. Coxeter and B. Grünbaum, Face-transitive polyhedra with rectangular faces and icosahedral symmetry. Discrete & Comput. Geometry 25(2001), 163¨C172.Google Scholar
  12. 12.
    [] H. S. M. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller, Uniform polyhedra. Philos. Trans. Roy. Soc. London (A) 246 (1953/54), 401–450.Google Scholar
  13. 13.
    P. J. Davis, Circulant Matrices. Wiley-Interscience, New York 1979.Google Scholar
  14. 14.
    [] J. Douglas, Geometry of polygons in the complex plane. J. Math. Phys. 19 (1940), 93–130.zbMATHGoogle Scholar
  15. 15.
    A. W. M. Dress, A combinatorial theory of Grünbaum’s new regular polyhedra, Part I: Grünbaum’s new regular polyhedra and their automorphism group. Aequationes Math. 23 (1981), 252–265.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    A. W. M. Dress, A combinatorial theory of Grünbaum’s new regular polyhedra, Part II: Complete enumeration. Aequationes Math. 29 (1985), 222–243.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    A. Dürer, Unterweisung der Messung mit dem Zirkel und Richtscheit. 1525. English translation with commentary by W. L. Strauss: The Painter’s Manual. Abaris, New York 1977.Google Scholar
  18. 18.
    Euclid, The Thirteen Books of Euclid’s Elements, translated and edited by T. L Heath. Vol. III, Books X-XIII, Cambridge Univ. Press 1926. There are many other editions and translations.Google Scholar
  19. 19.
    J. C. Fisher, D. Ruoff and J. Shilleto, Polygons and polynomials. In: The Geometric Vein: the Coxeter Festschrift, C. Davis, B. Grünbaum, F. A. Scherk, eds., pp. 165–176. Springer, New York, 1981.Google Scholar
  20. 20.
    A. Girard, Table des sines, tangentes & secantes, selon le raid de 100000 parties. Avec un traict´e succinct de la trigonometrie tant des triangles plans, que sphericques. O¨´son plusieurs operations nouvelles, non auparavant mises en lumiere, tres-utiles & necessaires, non seulment aux apprentifs; mais aussi aux plus doctes practiciens des mathematiques. Elzevier, ¨¤ la Haye 1626.Google Scholar
  21. 21.
    B. Grünbaum, Regular polyhedra-old and new. Aequationes Math. 16(1977), 120.CrossRefGoogle Scholar
  22. 22.
    [] B. Grünbaum, Regular polyhedra. In Companion Encyclopaedia of the History and Philosophy of the Mathematical Sciences, I. Grattan-Guinness, ed. Rout-ledge, London 1994. Vol. 2, pp. 866–876.Google Scholar
  23. 23.
    B. Grünbaum, Polyhedra with hollow faces. In POLYTOPES: Abstract, Convex and Computational, Proc. NATO-ASI Conference, Toronto 1993. T.Bisztriczky, P. McMullen, R. Schneider and A. Ivic’ Weiss, eds. Kluwer Acad. Publ., Dordrecht 1994, pp. 43–70.Google Scholar
  24. 24.
    B. Grünbaum, Metamorphoses of polygons. In The Lighter Side of Mathematics, Proc. Eug¨¨ne Strens Memorial Conference, R. K. Guy and R. E, Woodrow, eds. Math. Assoc. of America, Washington, D.C. 1994, pp. 35–48.Google Scholar
  25. 25.
    B. Grünbaum, Isogonal decagons. In: The Pattern Book. Fractals, Art, and Nature, C. A. Pickover, ed. World Scientific, Singapore 1995, pp. 251–253.Google Scholar
  26. 26.
    B. Grünbaum, Still more rhombic hexecontahedra. Geombinatorics 6(1997), 140¨C142.Google Scholar
  27. 27.
    B. Grünbaum, Realizations of symmetric maps by symmetric polyhedra. Discrete Comput. Geom. 20 (1998), 19–33.zbMATHGoogle Scholar
  28. 28.
    B. Grünbaum, Parallelogram-faced isohedra with edges in mirror-planes. Discrete Math. 221(2000), 93¨C100.CrossRefGoogle Scholar
  29. 29.
    B. Grünbaum, “New” uniform polyhedra. In: Discrete Geometry: In Honor of W. Kuperberg’s 60th Birthday, A. Bezdek, ed. Dekker, New York 2003, pp. 331¨C350.Google Scholar
  30. 30.
    S. Günther, Vermischte Untersuchungen zur Geschichte der mathematischen Wissenschaften. Teubner, Leipzig 1876.Google Scholar
  31. 31.
    Z. Har’El, Uniform solutions for uniform polyhedra. Geometriae Dedicata 47 (1993), 57–110.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    E. Hess, Über gleicheckige und gleichkantige Polygone. Schriften der Gesellschaft zur Beförderung der gesammten Naturwissenschaften zu Marburg, Band 10, Abhandlung 12, pp. 611–743, 29 figures. Th. Kay, Cassel 1874.Google Scholar
  33. 33.
    E. Hess, Ueber zwei Erweiterungen des Begriffs der regelmässigen Körper. Sitzungsberichte der Gesellschaft zur Beförderung der gesammten Naturwissenschaften zu Marburg 1875, pp. 1–20.Google Scholar
  34. 34.
    E. Hess, Ueber die zugleich gleicheckigen und gleichflächigen Polyeder. Schriften der Gesellschaft zur Beförderung der gesammten Naturwissenschaften zu Marburg, Band 11, Abhandlung 1, pp. 1–97, 11 figures. Th. Kay, Cassel 1876.Google Scholar
  35. 35.
    E. Hess, Ueber einige merkwürdige nichtkonvexe Polyeder. Sitzungsberichte der Gesellschaft zur Beförderung der gesammten Naturwissenschaften zu Marburg 1877, pp. 1–13.Google Scholar
  36. 36.
    E. Hess, Einleitung in die Lehre von der Kugelteilung. Teubner, Leipzig 1883.Google Scholar
  37. 37.
    T. Hugel, Die regulären und halbregulären Polyeder. Gottschick-Witter, Neustadt a. d. H., 1876.Google Scholar
  38. 38.
    [] J. Kepler, Harmonices mundi. J. Planck, Linz 1619. Also in Opera omnia, Vol. V, Frankfurt 1864, pp. 75–334. German translation in Gesammelte Werke, Vol. 6, Beck, Munich 1940, pp. 75–334. There are many other editions and translations.Google Scholar
  39. 39.
    [] H. Martini, On the theorem of Napoleon and related topics. Math. Semester-ber. 43 (1996), 47–64.Google Scholar
  40. 40.
    P. McMullen and E. Schulte, Abstract Regular Polytopes. Cambridge Univ. Press 2002.zbMATHCrossRefGoogle Scholar
  41. 41.
    [] A. L. F. Meister, Generalia de genesi figurarum planarum et inde pendentibus earum affectionibus. Novi Comm. Soc. Reg. Scient. Gotting. 1 (1769/70), pp. 144–180 + plates.Google Scholar
  42. 42.
    [] A. F. Möbius, Ueber die Bestimmung des Inhaltes eines Polyëders. Ber. Verh. S¡§achs. Ges. Wiss, math.-phys. Kl. 17 (1865), 31–68. (= Ges. Werke, Vol.2 pp. 31–68. Hirzel, Leipzig 1886.)Google Scholar
  43. 43.
    [] B. H. Neumann, Plane polygons revisited. In Essays in Statistical Science: Papers in Honour of P. A. P. Moran, J. Gani and E. J. Hannan, eds. Also in J. of Appl. Prob., Special volume 19A (1982), pp. 113–122.Google Scholar
  44. 44.
    L. Pacioli, De divina proportione. 1498.Google Scholar
  45. 45.
    L. Poinsot, M¨¦moire sur les polygones et les poly¨¨dres. J. École Polytech. 10 (1810), 16–48. German translation by R. Haußner, with comments, as “Abhandlung Über die Vielecke und Vielflache”. Pages 16–48 and 16–48 in Abhandlungen Über die regelm¡§aßigen Sternk¡§orper, Ostwald’s Klassiker der exakten Wissenschaften, Nr. 151. Engelmann, Leipzig 1906.Google Scholar
  46. 46.
    [] I. J. Schoenberg, The finite Fourier series and elementary geometry. Amer. Math. Monthly 57 (1950), pp. 390–404.Google Scholar
  47. 47.
    [] W. Schuster, Polygonfolgen und Napoleonsätze. Math. Semesterberichte 41 (1994), 23–42.Google Scholar
  48. 48.
    [] W. Schuster, Regularisierung von Polygonen. Math. Semesterberichte 45 (1998), 77–94.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    G. C. Shephard, Isohedral deltahedra. Periodica Math. Hungar. 39 (1999), 83–106.MathSciNetzbMATHGoogle Scholar
  50. 50.
    J. Skilling, The complete set of uniform polyhedra. Philos. Trans. Roy. Soc. London (A) 278 (1975), 111–135.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    S. P. Sopov, Proof of the completeness of the enumeration of uniform polyhedra. [In Russian] Ukrain. Geom. Sbornik 8 (1970), 139–156.zbMATHGoogle Scholar
  52. 52.
    E. Steinitz, Polyeder und Raumteilungen. Encykl. Math. Wissenschaften 3 (1922), Geometrie, Part 3AB12, pp. 1–139.Google Scholar
  53. 53.
    M. J. Wenninger, Polyhedron Models. Cambridge University Press 1971.Google Scholar
  54. 54.
    M. J. Wenninger, Dual Models. Cambridge University Press 1983.Google Scholar
  55. 55.
    C. Wiener, Über Vielecke und Vielflache. Teubner, Leipzig 1864.Google Scholar
  56. 56.
    S. E. Wilson, New techniques for the construction of regular maps. Ph.D. thesis, University of Washington, Seattle 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Branko Grünbaum
    • 1
  1. 1.University of WashingtonSeattleUSA

Personalised recommendations