Advertisement

Surface Reconstruction by Wrapping Finite Sets in Space

  • Herbert Edelsbrunner
Part of the Algorithms and Combinatorics book series (AC, volume 25)

Abstract

Given a finite point set in ℝ3, the surface reconstruction problem asks for a surface that passes through many but not necessarily all points. We describe an unambiguous definition of such a surface in geometric and topological terms,and sketch a fast algorithm for constructing it. Our solution overcomes past limitations to special point distributions and heuristic design decisions.

Keywords

Simplicial Complex Stable Manifold Surface Reconstruction Homotopy Type Voronoi Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-D. Boissonnat. Geometric structures for three-dimensional shape representation.ACM Trans. Graphics 3 (1984), 266-286.CrossRefGoogle Scholar
  2. 2.
    C. Bregler and S. M. Omohundro. Nonlinear manifold learning for visual speech recognition. In ¡°Proc. 5th Internat. Conf. Comput. Vision, 1995¡±, 494-499.Google Scholar
  3. 3.
    K. L. Clarkson, K. Mehlhorn and R. Seidel. Four results on randomized incremental constructions. In “Proc. 9th Ann. Sympos. Theoret. Aspects Comput. Sci., 1992”, 463-474, Lecture Notes in Comput. Sci. 577, Springer-Verlag.MathSciNetGoogle Scholar
  4. 4.
    H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimensions.Combinatorica 10 (1990), 251-260.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graphics 9 (1990), 66-104.zbMATHCrossRefGoogle Scholar
  6. 6.
    H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graphics 13 (1994), 43-72.zbMATHCrossRefGoogle Scholar
  7. 7.
    H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular triangulations. In ¡°Proc. 8th Ann. Sympos. Comput. Geom., 1992¡±,43-52.Google Scholar
  8. 8.
    M. Facello. Geometric Techniques for Molecular Shape Analysis. Ph. D. Thesis, Dept. Comput. Sci., Univ. Illinois, Urbana, 1996.Google Scholar
  9. 9.
    H. Fuchs, Z. Kedem, and S.P.Uselton. Optimal surface reconstruction from planar contours. Comm. ACM 20 (1977), 693-702.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    P. J. Giblin. Graphs, Surfaces, and Homology. Second edition, Chapman and Hall, London, 1981.zbMATHGoogle Scholar
  11. 11.
    H. Hoppe, T. de Rose, T. Duchamp, J. McDonald, and W. St¡§utzle.Surface reconstruction from unorganized points. Computer Graphics, Proc.siggraph 1992, 71-78.404 H. EdelsbrunnerCrossRefGoogle Scholar
  12. 12.
    D. W. Matula and R. R. Sokal. Properties of Gabriel graphs relevant to geographic variation research and the clustering of points in the plane.Geographic Analysis 12 (1980), 205-222.CrossRefGoogle Scholar
  13. 13.
    D. Meyers, S. Skinner and K. Sloan. Surfaces from contours. ACM Trans.Graphics 11 (1992), 228-258.zbMATHCrossRefGoogle Scholar
  14. 14.
    J. Milnor. Morse Theory. Annals Math. Studies, Princeton Univ. Press,1963.Google Scholar
  15. 15.
    R. C. Veltkamp. Closed Object Boundaries from Scattered Points. Springer-Verlag, Berlin, 1994.zbMATHCrossRefGoogle Scholar
  16. 16.
    A. Wallace. Differential Topology. First Steps. Benjamin, New York, 1968.zbMATHGoogle Scholar
  17. A.
    N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22 (1999), 481-504.MathSciNetzbMATHCrossRefGoogle Scholar
  18. B.
    N. Amenta, S. Choi and R. Kolluri. The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl. 19 (2001), 127-153.MathSciNetzbMATHCrossRefGoogle Scholar
  19. C.
    F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva and G. Taubin.The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Visual.Comput. Graphics 5(1999), 349-359.CrossRefGoogle Scholar
  20. D.
    F. Bernardini and C. L. Bajaj. Sampling and reconstructing manifolds using α-shapes. In “Proc. 9th Canadian Conf. Comput. Geom., 1997”±, 193-198.Google Scholar
  21. E.
    J.-D. Boissonnat and F. Cazals. Smooth surface reconstruction via natural neighbour interpolation of distance functions. In “Proc. 16th Ann. Sympos.Comput. Geom. 2000” 223-232.Google Scholar
  22. F.
    B. Curless and M. Levoy. A volumetric method for building complex models from range images. Comput. Graphics, Proc. siggraph 1996, 303-312.Google Scholar
  23. G.
    H. Edelsbrunner, D. Letscher and A. Zomorodian. Topological persistence and simplification. Discrete Comput. Geom., to appear.Google Scholar
  24. H.
    R. Forman. Combinatorial differential topology and geometry. In New Perspective in Geometric Combinatorics, MSRI Publication 8, 1999, 177-206.Google Scholar
  25. I.
    S. Funke and E. A. Ramos. Smooth surface reconstruction in near-linear time. In ¡°Proc. 13th Ann. SIAM-ACM Sympos. Discrete Algorithms, 2002¡±,781-790.Google Scholar
  26. J.
    G. Meenakshisundaram. Theory and Practice of Sampling and Reconstruction for Manifolds with Boundaries. Ph. D. Thesis, Dept. Comput. Sci., Univ.North Carolina, Chapel Hill, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Herbert Edelsbrunner
    • 1
    • 2
  1. 1.Departments of Computer Science and MathematicsDuke UniversityDurhamUSA
  2. 2.Raindrop GeomagicUSA

Personalised recommendations