Advertisement

Ion traps — Precision measurements and more

  • G. Bollen
Conference paper

Abstract

Today ion traps are an important experimental tool. Applications range from high-precision measurements of masses and moments, realization of atomic clocks, to the study of ion chemical reactions. Ion traps have gained particular importance in the field of nuclear physics where they are used for the precise determination of nuclear binding energies, decay studies, and radioactive ion beam manipulation.

PACS

21.10.Dr Binding energies and masses 21.10.Ky Electromagnetic moments 23.40.Bw Weak-interaction and lepton (including neutrino) aspects 24.80.+y Nuclear tests of fundamental interactions and symmetries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proceedings of the Nobel Symposium 91 on Trapped Charged Particles and Related Fundamental Physics, Lysekil, Sweden, 1994, Phys. Scr. T 59 (1995).Google Scholar
  2. 2.
    Proceedings of the International Conlerence on Trapped Charged Particles and Fundamental Physics, Asilomar, CA, USA, 1998, edited by D.H.E. Dubin, D. Schneider, AlP Conf. Proc. 457, 111 (1999).Google Scholar
  3. 3.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58,233 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    G. Bollen et al., J. Appl. Phys. 68, 4355 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    M. König et al., Int. J. Mass Spectrom. Ion. Proc. 142, 95 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    K. Blaum et al., this issue, p. 245.Google Scholar
  7. 7.
    F. DiFillipo et al., Phys. Rev. Lett. 73, 1481 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    M.P. Bradley et al., Phys. Rev. Lett. 83, 4510 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    C. Carlberg et al., Phys. Scr. T 73, 347 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    D. Pritchard, MIT, friendly permission to show figure.Google Scholar
  11. 11.
    C. Carlberg et al., Phys. Rev. Lett. 83,4506 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    T. Beier et al., this issue, p. 41.Google Scholar
  13. 13.
    G. Bollen, Nucl. Phys. A 626, 297c (1997).ADSCrossRefGoogle Scholar
  14. 14.
    W. Mittig et al., Annu. Rev. Nucl. Sci. 47, 27 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    S. Goriely, M. Arnould, Astron. Astrophys. 312, 327 (1996).ADSGoogle Scholar
  16. 16.
    K.-L. Kratz et al., Nucl. Phys. A 630, 352C (1998).ADSCrossRefGoogle Scholar
  17. 17.
    H. Schatz et al., Phys. Rep. 294, 167 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    G. Bollen et al., Phys. Rev. C 46, R2140 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    G. Bollen et al., Nucl. Instrum. Methods A 368, 675 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    H. Raimbault-Hartmann et al., Nucl. Instrum. Methods B 126, 374 (1997).CrossRefADSGoogle Scholar
  21. 21.
    F. Herfurth et al., Nucl. Instrum. Methods A 469, 254 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    G. Bollen et al., Hyperfine Interact. 38, 793 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    H.-J. Kluge, Phys. Scr. T 22, 85 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    H. Stolzenberg et al., Phys. Rev. Lett. 65, 3104 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    G. Bollen et al., J. Mod. Opt. 39,257 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    T. Otto et al., Nucl. Phys. A 567, 281 (1994).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    D. Beck et al., Nucl. Phys. A 626, 343c (1997).ADSCrossRefGoogle Scholar
  28. 28.
    F. Ames, et al., Nucl. Phys. A 651, 3 (1999).ADSCrossRefGoogle Scholar
  29. 29.
    D. Beck et al., Eur. Phys. J. A 8, 307 (2000).ADSCrossRefGoogle Scholar
  30. 30.
    S. Schwarz et al., Nucl. Phys. A 693, 533 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    F. Herfurth et al., Phys. Rev. Lett. 87, 142501 (2001).ADSCrossRefGoogle Scholar
  32. 32.
    G. Bollen et al., in Proceedings of the 2nd Euroconference on Atom Physics at Accelerators (APAC 2000), Hyperfine Interact. 132,215 (2001).ADSCrossRefGoogle Scholar
  33. 33.
    F. Herfurth et al., this issue, p. 17.Google Scholar
  34. 34.
    K.S. Sharma et al., in Proceedings of the International Conference on Exotic Nuclei and Atomic Masses ENAM98, Bellaire, MI, USA, 1998, edited by B.M. Sherrill, D.J. Morrissey, C.N. Davids, AIP Conf. Proc. 455, 103 (1998).Google Scholar
  35. 35.
    G. Savard et al., in Proceedings of the 2nd Euroconference on Atom Physics at Accelerators (APAC 2000), Hyperfine Interact. 132, 223 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    J. Clark, Mass measurements of proton-rich nuclides using the Canadian Penning trap mass spectrometer, to be published in Exotic Nuclei and Atomic Masses (SpringerVerlag, Heidelberg, 2002).Google Scholar
  37. 37.
    D. Beck et al., in Proceedings of International Conference on the Trapped Charged Particles and Fundamental Physics, Asilomar, CA, USA, 1998, edited by D.H.E. Dubin, D. Schneider, AIP Conf. Proc. 457, 172 (1999).ADSCrossRefGoogle Scholar
  38. 38.
    N. Severijns, this issue, p. 217.Google Scholar
  39. 39.
    E. Lienard et al., in Proceedings of the International Conference on Nuclear Physics at Border Lines, edited by G. Giardana, F. Hanappe (World Scientific, Singapore, 2001).Google Scholar
  40. 40.
    O. Naviliat-Cuncic, LPC/Caen, private communication.Google Scholar
  41. 41.
    L. Weissman et al., in Proceedings of the 2nd Euroconference on Atom Physics at Accelerators (APAC 2000), Hyperfine Interact. 132, 535 (2001).ADSCrossRefGoogle Scholar
  42. 42.
    F. Ames et al., in Proceedings of the International Conference on Exotic Nuclei and Atomic Masses ENAM98, Bellaire, MI, USA, 1998, edited by B.M. Sherrill, D.J. Morrissey, C.N. Davids, AIP Conf. Proc. 455, 927 (1998).ADSGoogle Scholar
  43. 43.
    G. Bollen, Nucl. Phys. A 616, 457c (1997).ADSCrossRefGoogle Scholar
  44. 44.
    R.B. Moore, G. Rouleau, J. Mod. Opt. 39, 361 (1992).ADSCrossRefGoogle Scholar
  45. 45.
    G. Savard et al., Phys. Lett. A 158, 247 (1991).ADSCrossRefGoogle Scholar
  46. 46.
    J. Szerypo et al., Acta Phys. Pol. B 32, 985 (2001).ADSGoogle Scholar
  47. 47.
    J. Dilling et al., Hyperfine Interact. 127, 491 (2000).ADSCrossRefGoogle Scholar
  48. 48.
    A. Nieminen et al., Nucl Instrum. Methods 469, 244 (2001).ADSCrossRefGoogle Scholar
  49. 49.
    H. Penttilä et al., Nucl. Instrum. Methods B 126, 213 (1997).ADSCrossRefGoogle Scholar
  50. 50.
    J. Billowes et al., Nucl. Phys. A 682, 206c (2001).ADSCrossRefGoogle Scholar
  51. 51.
    D. Habs et al., Hyperfine Interact. 129, 43 (2000).ADSCrossRefGoogle Scholar
  52. 52.
    A. Nieminen, Jyväskylä, private communication.Google Scholar
  53. 53.
    S. Fujitaka et al., Nucl. Instrum. Methods B 126, 386 (1997).ADSCrossRefGoogle Scholar
  54. 54.
    S. Schwarz et al., The LEBIT project at NSCL/MSU, poster contribution, to be published in Exotic Nuclei and Atomic Masses (Springer-Verlag, Heidelberg, 2002).Google Scholar
  55. 55.
    R.C. York et al., in Proceedings of the 15th International Conference on Cyclotrons and their Applications, Caen, 1998, edited by E. Baron and M. Lieuvin (IOP, Bristol, 1999) p. 687.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • G. Bollen
    • 1
  1. 1.NSCL/MSUEast LansingUSA

Personalised recommendations