Sponges (Porifera) pp 35-57

Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 37)

Sponge-Associated Bacteria: General Overview and Special Aspects of Bacteria Associated with Halichondria panicea

  • J. F. Imhoff
  • R. Stöhr

Abstract

Increasing evidence is accumulating that highlights the important role of bacteria in bacteria—sponge associations. It appears to be equally important to analyse the specific association of bacteria with sponges, to realise the biological function of biologically active substances produced by sponge-associated bacteria, and to consider the relationship between bacteria and sponges in the search for new pharmaceutical products. In this chapter the current knowledge on bacteria—sponge associations is briefly reviewed. Results are summarised that were obtained by three major methodological approaches: (1) classical microscope observations, (2) investigations attempting to characterise sponge-associated bacteria by describing pure culture isolates, and (3) the rapidly growing evidence from genetic analyses of sponge-associated bacteria. Special emphasis is given to the evidence of possible symbiotic interactions between bacteria and sponges and to the synthesis of natural products by bacteria isolated from or associated with marine sponges. Case studies including morphological and genetic studies together with results from pure culture studies have been performed with bacteria from the sponges Rhodopaloeides odorabile, Aplysina cavernicola, and Halichondria panicea. In addition, new results on bacteria associated with Halichondria panicea are also presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althoff K, Schütt C, Steffen R, Batel B, Müller WEG (1998) Evidence for symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar Biol 130:529–536CrossRefGoogle Scholar
  2. Berthold RJ, Borowitzka MA, Mackay MA (1982) The ultrastructure of Oscillatoria spongeliae, the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia 21:327–335CrossRefGoogle Scholar
  3. Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722PubMedCrossRefGoogle Scholar
  4. Bultel-Poncé V, Debitus C, Blond A, Cerceau C, Guyot M (1998) Lutoside:an acyl-1-(acyl-6’-mannobiosyl)-3-glycerol isolated from the sponge-associated bacterium Micrococcus luteus. Tetrahedron Lett 38:5805–5808CrossRefGoogle Scholar
  5. Bultel-Poncé V, Berge JP, Debitus C, Nicolas JL, Guyot M (1999) Metabolites from the sponge-associated bacterium Pseudomonas species. J Mar Biotechnol 1:384–390CrossRefGoogle Scholar
  6. Burja AM, Webster NS, Murphy PT, Hill RT (1999) Microbial symbionts of Great Barrier Reef sponges. Mem Queensland Mus 44:63–75Google Scholar
  7. Carballeira N, Thompson JE, Ayanoglu E, Djerassi C (1986) Biosynthetic studies of marine lipids. 5. The biosynthesis of long-chain branched fatty acids in marine sponges. J Org Chem 51:2751–2756CrossRefGoogle Scholar
  8. Cheshire AC, Wilkinson CR (1991) Modelling the photosynthetic production by sponges on Davies Reef, Great Barrier Reef. Mar Biol 109:13–18.Google Scholar
  9. Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG (2001) Evidence for the biosynthesis of bryostatin by the bacterial symbiont “Candidatus Endobugula sertula” of the bryozoan Bugula neritina. Appl Environ Mivrobiol 67:4531–4537CrossRefGoogle Scholar
  10. Debitus C, Guella G, Mancini II, Waikedre J, Guemas JP, Nicolas JL, Pietra F (1998) Quinolones from a bacterium and tyrosine metabolites from its host sponge, Suberea creba, from the Coral Sea. J Mar Biotechnol 6:136–141PubMedGoogle Scholar
  11. De Vos L, Rützler K, Boury-Esnault N, Donadey C, Vacelet J (1995) Atlas of sponge morphology. Smithsonian Institution Press, WashingtonGoogle Scholar
  12. Dosse G (1939) Bakterien und Pilzbefunde sowie pathologische und Fäulnisvorgänge in Meeres-und Süβwasserschwämmen. Untersuchungen im Zusammenhang mit dem gegenwärtigen Sterben der Badeschwamme in Westindien. Z Parasitkde 11:331–356CrossRefGoogle Scholar
  13. Eimhjellen KA (1967) Photosynthetic bacteria and carotenoids from a sea sponge Halichondrium panicea. Acta Chem Scand 21:2280–2281CrossRefGoogle Scholar
  14. Elyakov GB, Kuznetsova, T, Mikhailov VV, Maltsev II, Voinov VG, Fedoreyev H (1991) Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experienta 47:632–633CrossRefGoogle Scholar
  15. Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49PubMedCrossRefGoogle Scholar
  16. Flowers AE, Garson MJ, Webb RI, Dumdei EJ, Charan RD (1998) Cellular origin of chlorinated diketopiperazines in the dictyoceratid sponge Dysidea herbacea (Keller). Cell Tissue Res 292:597–607PubMedCrossRefGoogle Scholar
  17. Friedrich AB, Merker H, Fendert T, Hacker J, Proksch P, Hentschel U (1999) Microbial diversity in the marine sponge Aplysina cavernicula (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar Biol 134:461–470CrossRefGoogle Scholar
  18. Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38:105–113CrossRefGoogle Scholar
  19. Hanh S, Wai-kwan L, Wu J, Silva CJ, Djerassi C (1989) Unusual pattern of fatty acid biosynthesis — evidence for C-19 desaturase activity in fresh water sponges. J Biol Chem264:21043–21046Google Scholar
  20. Hentschel I, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312PubMedCrossRefGoogle Scholar
  21. Hinde R, Pironet F, Borowitzka MA (1994) Isolation of Oscillatoria spongeliaey the filamentous cyanobacterial symbiont of the marine sponge Dysidea herbacea. Mar Biol 119:99–104CrossRefGoogle Scholar
  22. Hwang DF, Arakawa O, Sato T, Noguchi T, Simidu U, Tsukamoto K, Shida Y, Hashimoto K (1989) Tetrodoxin producing bacteria from the blue-ringed octopus Octopus maculosus. Mar Biol 100:327–332CrossRefGoogle Scholar
  23. Imamura N, Nishijima M, Adachi K, Sano H (1993) Novel antimycin antibiotics, Urauchimycins A and B, produced by marine actinomycete. J Antibiot 46:241–246PubMedCrossRefGoogle Scholar
  24. Imhoff JF, Trüper HG (1976) Marine sponges as habitats of anaerobic phototrophic bacteria. Microb Ecol 3:1–9CrossRefGoogle Scholar
  25. Jakowska S, Nigrelli RF (1960) Antimicrobial substances from sponges. Ann NY Acad Sci 90:913–916PubMedCrossRefGoogle Scholar
  26. Jayatilake GS, Thornton MP, Leonard AC, Grimwade JE, Baker BJ (1996) Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J Nat Prod 59:293–296Google Scholar
  27. Kaneda T (1991) Iso-and anteiso-fatty acids in bacteria: biosynthesis, function and taxonomic significance. Microbiol Rev 55:288–302Google Scholar
  28. Kaye HR (1991) Sexual reproduction in four Caribbean commercial sponges. II. Oogenesis and transfer of bacterial symbionts. Invert Reprod Dev 19:13–24CrossRefGoogle Scholar
  29. Lee MJ, Jeong DY, Kim WS, Kim HD, Kim CH, Park WW, Park YH, Kim KS, Kim HM, Kim DS (2000) A tetrodoxin producing Vibrio strain LM-1 from the puffer fish Fugu vermicularis radiatus. Appl Environ Microbiol 66:1698–1701PubMedCrossRefGoogle Scholar
  30. Madri PP, Hermel M, Claus G (1971) The microbial flora of the sponge Microciona prolifera Verrill and its ecological implications. Bot Mar 14:1–5CrossRefGoogle Scholar
  31. McClintock JB, Baker BJ (1997) A review of the chemical ecology of shallow-water Antarctic marine invertebrates. Am Zool 37:329–347Google Scholar
  32. Munro MHG, Leibrand RT, Blunt JW (1987) The search for antiviral and anticancer compounds from marine organisms. In: Scheuer PJ (ed) Bioorganic marine chemistry 1. Springer, Berlin Heidelberg New York, pp 93–176CrossRefGoogle Scholar
  33. Munro MH, Blunt JW, Dumdei EJ, Hickford SJ, Lill RE, Li S, Battershill CN, Duchworth AR (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25PubMedCrossRefGoogle Scholar
  34. Murakami Y, Oshima Y, Yasouoto T (1982) Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. Nippon Suisan Gakk 48:69–72CrossRefGoogle Scholar
  35. Nordby H, Nemec S, Nagy S (1981) Fatty acids and sterols associated with citrus root mycorrhizae. J Agric Food Chem 29:396–401Google Scholar
  36. Oclarit JM, Okada H, Ohta S, Kaminura K, Yamaoka Y, Iizuka T, Miyashiro S, Ikegami S (1994) Anti-bacillus substance in the marine sponge, Hyatella species, produced by an associated Vibrio species bacterium. Microbios 78:7–16PubMedGoogle Scholar
  37. Perovic S, Wichels A, Schütt C, Gerdts G, Pahler S, Steffen R, Müller WEG (1998) Neuroactive compounds produced by bacteria from the marine sponge Halichondria panicea: activation of the neuronal NMDA receptor. Environ Toxicol Pharmacol 6:125–133PubMedCrossRefGoogle Scholar
  38. Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Crenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–6246PubMedCrossRefGoogle Scholar
  39. Reiswig H (1971) In situ pumping activities of tropical Demospongiae. Mar Biol 9:38–50CrossRefGoogle Scholar
  40. Reiswig H (1975) Bacteria as food for temperate-water marine sponges. Can J Zool 53:582–589CrossRefGoogle Scholar
  41. Santavy DL (1985) The symbiontic relationship between a blue-pigmented bacterium and the coral reef sponge, Terpios granulosa. In: Harmelin Vivien M, Salvat B (eds) Proc Fifth Int Coral Reef Congress, Tahiti, vol 5. Antenne Museum Ephe, Moorea, Tahiti, pp 135–140Google Scholar
  42. Santavy DL, Colwell RR (1990) Comparison of bacterial communities associated with the Caribbean sclerosponge Ceratoporella nicholsoni and ambient seawater. Mar Ecol Prog Ser 67:73–82CrossRefGoogle Scholar
  43. Santavy DL, Willenz P, Colwell RR (1990) Phenotypic study of the microbial symbionts found in the Caribbean sclerosponge: Ceratoporella nicholsoni. Appl Environ Microbiol 56:1750–1762PubMedGoogle Scholar
  44. Sarà M (1971) Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar Biol 11:214–221CrossRefGoogle Scholar
  45. Sarma AS, Daum T, Müller WEG (1993) Secondary metabolites from marine sponges. Akademie gemeinnütziger Wissenschaften zu Erfurt, Ullstein-Mosby Verlag, BerlinGoogle Scholar
  46. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-Proteobacterium,“Candidatus Entotheonella palauensis”. Mar Biol 136:969–977CrossRefGoogle Scholar
  47. Schupp P, Eder C, Paul V, Proksch P (1999) Distribution of secondary metabolites in the sponge Oceanapia sp. and its ecological implications. Mar Biol 135:573–580CrossRefGoogle Scholar
  48. Shieh WY, Lin YM (1994) Association of heterotrophic nitrogen-fixing bacteria with a marine sponge of Halichondria sp. Bull Mar Sci 54:557–564Google Scholar
  49. Shigemori H, Bae M-A, Yazawa K, Sasaki T, Kobayashi J (1992) Alteramide A, a new tetracyclic alkaloid from a bacterium Alteromonas sp. associated with the marine sponge Halichondria okadai. J Org Chem 57:4317–4320CrossRefGoogle Scholar
  50. Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  51. Stierle AC, Cardellina JH, Singleton FL (1988) A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experienta 44:1021CrossRefGoogle Scholar
  52. Thacker RW, Becerro MA, Lumbang WA, Paul VJ (1998) Allelopathic interaction between sponges on a tropical reef. Ecology 79:1740–1750CrossRefGoogle Scholar
  53. Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11CrossRefGoogle Scholar
  54. Vacelet J (1970) Description de cellules a bactéries intranucléaires chez des éponges Verongia. J Microsc 9:333–346.Google Scholar
  55. Vacelet J (1975) Etude en mircrosopie électronique de l’association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). J Microsc Biol Cell 23:271–288Google Scholar
  56. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314CrossRefGoogle Scholar
  57. Vacelet J, Fiala-Médoni A, Fisher CR, Boury-Esnault N (1996) Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Mar Ecol Progr Ser145:77–85CrossRefGoogle Scholar
  58. Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Mar Biol 138:843–851CrossRefGoogle Scholar
  59. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444PubMedCrossRefGoogle Scholar
  60. Weissenfels N (1976) Bau und Funktion des Susswasserschwammes Ephydatia fluviatilis L. (Porifera). III. Nahrungsaufnahme, Verdauung und Defakation. Zoomorphologie 85:73–88CrossRefGoogle Scholar
  61. Wilkinson CR (1978a) Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar Biol 49:161–167CrossRefGoogle Scholar
  62. Wilkinson CR (1978b) Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49:169–176CrossRefGoogle Scholar
  63. Wilkinson CR (1978c) Microbial associations in sponge. III. Ultrastructure of the in situ association in coral reef sponges. Mar Biol 49:177–185CrossRefGoogle Scholar
  64. Wilkinson CR (1978d) Significance of microbial symbionts in sponge evolution and ecology. Symbiosis 4:135–146Google Scholar
  65. Wilkinson CR (1983) Net primary productivity in coral reef sponges. Science 219:410–412PubMedCrossRefGoogle Scholar
  66. Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279:527–529CrossRefGoogle Scholar
  67. Wilkinson CR, Nowak M, Austin B, Colwell RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb Ecol 7:13–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. F. Imhoff
    • 1
  • R. Stöhr
    • 1
  1. 1.Institut für MeereskundeUniversität KielKielGermany

Personalised recommendations