Advertisement

hp-Adaptive Finite Elements for Time-Harmonic Maxwell Equations

  • Leszek Demkowicz
Chapter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 31)

Summary

We review the fundamentals of hp-finite element discretisation of Maxwell equations and their numerical implementation, and describe an automatic hp-adaptive scheme for the time-harmonic Maxwell equations.

Keywords

Coarse Mesh Interpolation Error Edge Element Edge Node Infinite Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Adams, Sobolev Spaces, Academic Press, New York 1978.Google Scholar
  2. 2.
    M. Ainsworth, and J. Coyle, Hierarchic hp-edge Element Families for Maxwell’s Equations on Hybrid Quadrilateral/Triangular Meshes, Computer Methods in Applied Mechanics and Engineering, 190, 6709–6733, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M. Ainsworth, and J. Coyle, Conditioning of Hierarchic p-Version Nédélec Elements on Meshes of Curvilinear Quadrilaterals and Hexahedra, preprint 2002.Google Scholar
  4. 4.
    M. Ainsworth, and J. Coyle, Hierarchic Finite Element Bases on Unstructured Tetrahedral Meshes, preprint 2002.Google Scholar
  5. 5.
    I. Babuška and M. Suri, The Optimal Convergence Rate of the p-Version of the Finite Element Method, SIAM J. Numer. Anal., 24,4, 750–776, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    I. Babuška, A. Craig, J. Mandel, and J. Pitkaränta, Efficient Preconditioning for the p-Version Finite Element Method in Two Dimensions, SIAM J. Numer. Anal., 28,3, 624–661, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    R. Beck, P. Deuflhard, R. Hiptmair, R.H.W. Hoppe, B. Wohlmuth, Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell’s Equations, Surv. Meth. Ind. (1999),8: 271–312.Google Scholar
  8. 8.
    D. Boffi, Discrete Compactness and Fortin Operator for Edge Elements, Preprint, March 1999.Google Scholar
  9. 9.
    D. Boffi, A Note on the Discrete Compactness Property and die de Rham Diagram, Appl. Math. Lett., 14,1, 33–38, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    D. Boffi, L. Demkowicz, and M Costabel, Discrete Compactness for p and hp 2D Edge Finite Elements, TICAM Report 02-21, May 2002.Google Scholar
  11. 11.
    A. Bossavit, Un noveau point de vue sur les éléments finis mixtes, Matapli (bulletin de la Société de Mathématiques Appliquées et Industrielles, 23–35, 1989.Google Scholar
  12. 12.
    W. Cecot, L. Demkowicz, and W. Rachowicz, A Two-Dimensional Infinite Element for Maxwell’s Equations, Computer Methods in Applied Mechanics and Engineering, 188, 625–643, 2000.CrossRefzbMATHGoogle Scholar
  13. 13.
    W. Cecot, L. Demkowicz, and W. Rachowicz, An hp-Adaptive Finite Element Method for Electromagnetics. Part 3: A Three-Dimensional Infinite Element for Maxwell’s Equations, International Journal for Numerical Methods in Engineering, in print.Google Scholar
  14. 14.
    M. Cessenat, Mathematical Methods in Electromagnetism, World Scientific, Singapure 1996.zbMATHGoogle Scholar
  15. 15.
    M. Costabel and M. Dauge, Singularities of Electromagnetic Fields in Polyhedral Domains, Arch Rational Mech Anal. 151, 221–276, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Costabel, A Coercive Bilinear Form for Maxweh’s Equations, Math. Methods Appl. Sci, 12,4, 365–368, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M. Costabel and M. Dauge, Weighted Regularization of Maxwell Equadons in Polyhedral Domains, preprint 2001 (http://www.maths.umv-rennes1.fr/costabel/).Google Scholar
  18. 18.
    L. Demkowicz, Edge Finite Elements of Variable Order for Maxwell’s Equations, in Scientific Computing in Electrical Engineering, Proceedings of the 3rd International Workshop, August 20–23, Warnemuende, Germany, (Lecture Notes in Computational Science and Engineering 18), Springer Verlag, Berlin 2000.Google Scholar
  19. 19.
    L. Demkowicz, and L Babuška, Optimal p Interpolation Error Estimates for Edge Finite Elements of Variable Order in 2D, TICAM Report 01-11, accepted to SIAM Journal on Numerical Analysis.Google Scholar
  20. 20.
    L. Demkowicz and M. Pal, An Infinite Element for Maxwell’s Equations, Computers Methods in Applied Mechanics and Engineering, 164, 77–94, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    L. Demkowicz, W. Rachowicz, and Ph. Devloo, A Fully Automatic hp-Adaptivity, Journal of Scientific Computing, 17,1–3, 127–155, 2002.MathSciNetGoogle Scholar
  22. 22.
    L. Demkowicz, D. Pardo. and W. Rachowicz, 3D hp-Adaptive Finite Element Package (3Dhp90). Version 2.0, TICAM Report 02-24, June 2002.Google Scholar
  23. 23.
    L. Demkowicz, I. Babuška, J. Schöberl, and P. Monk, De Rham Diagram in 3D. Quasi Optimal p-Interpolation Estimates, TICAM Report, in preparation.Google Scholar
  24. 24.
    L. Demkowicz, P. Monk, L. Vardapetyan, and W. Rachowicz. De Rham Diagram for hp Finite Element Spaces Mathematics and Computers with Applications, 39, 7–8, 29–38, 2000.MathSciNetGoogle Scholar
  25. 25.
    L. Demkowicz, P. Monk, Ch. Schwab, and L. Vardapetyan Maxwell Eigenvalues and Discrete Compactness in Two Dimensions, Mathematics and Computers with Applications, 40,4–5, 598–605, 2000.MathSciNetGoogle Scholar
  26. 26.
    L. Demkowicz and L. Vardapetyan, Modeling of Electromagnetic Absorption/Scattering Problems Using hp-Adaptive Finite Elements, Computer Methods in Applied Mechanics and Engineering, 152,1–2, 103–124, 1998.MathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Hiptmair, Multigrid Method for Maxwell’s Equations., SIAM J. Numer Anal. Vol. 36(l): 204–225, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    R. Hiptmair, Canonical Construction of Finite Elements, Mathematics of Computation, 68, 1325–1346, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    R. Hiptmair, Higher Order Whitney Forms, Sonderforschungsbereich 382, Universität Tübingen, Report 156, August 2000.Google Scholar
  30. 30.
    F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Springer-Verlag, New York, 1998CrossRefzbMATHGoogle Scholar
  31. 31.
    F. Kikuchi, Mixed and Penalty Formulations for Finite Element Analysis of an Eigenvalue Problemd in Electromagnetism, Computer Methods in Applied Mechanics and Engineering, 64, 509–521, 1987...MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    F. Kikuchi, On a Discrete Compactness Property for the Nédélec Finite Elements, J. Fac. Sci. Univ. Tokyo Sct. IA Math, 36,3, 479–490, 1989.MathSciNetzbMATHGoogle Scholar
  33. 33.
    P.D. Ledger, J. Peraire, K. Morgan, O. Hassa, and N.P. Weatherill, Efficient, Higly Accurate hp Adaptive Finite Element Computations of the Scattering Width Output of Maxwell’s Equations, International Journal for Numerical Methods in Fluids, in print.Google Scholar
  34. 34.
    J. L. Lions and E. Magenes, Non Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, Berlin 1972.CrossRefGoogle Scholar
  35. 35.
    P. Monk, On the p-and hp-extension of Nédélec’s Curl-Conforming Elements, Journal of Computational and Applied Mathematics, 53, 117–137, 1994.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    P. Monk, L. Demkowicz, Discrete Compactness and the Approximation of Maxwell’s Equations in doubleIR 3 Mathematics of Computation, 70,234, 507–523, 2000.MathSciNetCrossRefGoogle Scholar
  37. 37.
    J.C. Nédélec, Mixed Finite Elements in ℝ3, Numerische Mathematik, 35, 315–341, 1980.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    J.C. Nédélec, A New Family of Mixed Finite Elements in ℝ3, Numerische Mathematik, 50, 57–81, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    D. Pardo and L. Demkowicz, Integration of hp-Adaptivity and Multigrid. I. A Two Grid Solver for hp Finite Elements, TICAM Report 02-33.Google Scholar
  40. 40.
    I. Perugia, D. Schötzau, and P. Monk, Stabilized Interior Penalty Methods for the Time-Harmonic Maxwell Equations, Computer Methods in Applied Mechanics and Engineering, 191,41–42, 4675–4697, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    W. Rachowicz and L. Demkowicz, A Two-Dimensional hp-Adaptive Finite Element Package for Electromagnetics (2Dhp90_EM), TICAM Report 98-15, July 1998.Google Scholar
  42. 42.
    W. Rachowicz, L. Demkowicz, and L. Vardapetyan, hp-Adaptive FE Modeling for Maxwell’s Equations. Evidence of Exponential Convergence ACES' 99, Monterey, CA, March 16-20, 1999.Google Scholar
  43. 43.
    W. Rachowicz and L. Demkowicz, An hp-Adaptive Finite Element Method for Electromagnetics. Part 1: Data Structure and Constrained Approximation, TICAM Report 98-15 Computer Methods in Applied Mechanics and Engineering, 187,1–2, 307–337, 2000.CrossRefzbMATHGoogle Scholar
  44. 44.
    W. Rachowicz and L. Demkowicz, A Three-Dimensional hp-Adaptive Finite Element Package for Electromagnetics, TICAM Report 00-04, February 2000Google Scholar
  45. 45.
    W. Rachowicz and L. Demkowicz, An hp-Adaptive Finite Element Method for Electromagnetics — Part II: A 3D Implementation, International Journal of Numerical Methods in Engineering, 53, 147–180, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Joachim Schoeberl, Commuting Quasi-interpolation Operators for Mixed Finite Elements, Preprint ISC-01-10-MATH, Texas A&M University, 2001.Google Scholar
  47. 47.
    Ch. Schwab, p and hp-Finite Element Methods, Clarendon Press, Oxford 1998.zbMATHGoogle Scholar
  48. 48.
    P. Solin and L. Demkowicz, Goal-Oriented hp-Adaptivity for Elliptic Problems, TICAM Report 02-32, August 2002.Google Scholar
  49. 49.
    P. P. Silvester, and G. Pelosi (eds.). Finite Elements for Wave Electromagnetics, IEEE Press, Piscatawy, NJ, 1994.Google Scholar
  50. 50.
    L. Vardapetyan and L. Demkowicz, hp-Adaptive Finite Elements in Electromagnetics, Computers Methods in Applied Mechanics and Engineering, 169, 331–344, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    L. Vardapetyan, and L. Demkowicz, Full-Wave Analysis of Dielectric Waveguides at a Given Frequency, Mathematics of Computation, 72, 105–129, 2002.MathSciNetCrossRefGoogle Scholar
  52. 52.
    L. Vardapetyan, L. Demkowicz, and D. Neikirk, Hp Vector Finite Element Method for Eigenmode Analysis of Waveguides, Computer Methods in Applied Mechanics and Engineering, in print.Google Scholar
  53. 53.
    J. Wang, N. Ida, Curvilinear and Higher-Order Edge Elements in Electromagnetic Field Computation, IEEE Trans. Magn., 29, 1491–1494, 1993.CrossRefGoogle Scholar
  54. 54.
    Y. Wang, P. Monk, and B. Szabo, Computing Cavity Modes Using the p Version of the Finite Element Method, IEEE Transaction on Magnetics, 32,3, 1934–1940, 1996.CrossRefGoogle Scholar
  55. 55.
    J. Wang, and J.P. Webb, Hierarchical Vector Boundary Elements and p-Adaption for 3-D Electromagnetic Scattering, IEEE Transactions on Antennas and Propagation, 45, 12, 1997.CrossRefGoogle Scholar
  56. 56.
    J. P. Webb, and B. Forghani, Hierarchical Scalar and Vector Tetrahedra, IEEE Trans. Mag., 29, 2, 1295–1498, 1993.Google Scholar
  57. 57.
    J. P. Webb, Hierarchical Vector Based Funtions of Arbitrary Order for Triangular and Tetrahedral Finite Elements, IEEE Antennas Propagat. Mag., 47,8, 1244–1253, 1999.CrossRefzbMATHGoogle Scholar
  58. 58.
    H. Whitney, Geometric Integration Theory, Princeton University Press, 1957.Google Scholar
  59. 59.
    Dong Xue and L. Demkowicz, Geometrical Modeling Package. Version 2.0, TICAM Report 02-30, August 2002.Google Scholar
  60. 60.
    A. Zdunek, W. Rachowicz, A Three-dimensional hp-Adaptive Finite Element Approach to Radar Scattering Problems, Presented ad Fifth World Congress on Computational Mechanics, Vienna, Austria, 7–12 July, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Leszek Demkowicz
    • 1
  1. 1.Texas Institute for Computational and Applied MathematicsThe University of Texas at AustinAustinUSA

Personalised recommendations