Computation of resonance frequencies for Maxwell equations in non-smooth domains

  • Martin Costabel
  • Monique Dauge
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 31)


We address the computation by finite elements of the non-zero eigenvalues of the (curl, curl) bilinear form with perfect conductor boundary conditions in a polyhedral cavity. One encounters two main difficulties: (i) The infinite dimensional kernel of this bilinear form (the gradient fields), (ii) The unbounded singularities of the eigen-fields near corners and edges of the cavity. We first list possible variational spaces with their functional properties and provide a short description of the edge and corner singularities. Then we address different formulations using a Galerkin approximation by edge elements or nodal elements.

After a presentation of edge elements, we concentrate on the functional issues connected with the use of nodal elements. In the framework of conforming methods, nodal elements are mandatory if one regularises the bilinear form (curl, curl) in order to get rid of the gradient fields. A plain regularisation with the (div, div) bilinear form converges to a wrong solution if the domain has reentrant edges or corners. But remedies do exist We will present the method of addition of singular functions, and the method of regularisation with weight, where the (div, div) bilinear form is modified by the introduction of a weight which can be taken as the distance to reentrant edges or corners.


Bilinear Form Edge Element Finite Element Space Singular Function Polyhedral Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Adam, P. Arbenz, R. Geus. Eigenvalue solvers for electromagnetic fields in cavities. Technical Report 275, Institute of Scientific Computing, ETH Zurich 1997.Google Scholar
  2. 2.
    C. Amrouche, C. Bernardi, M. Dauge, V. Girault. Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    T. Apel, V. Mehrmann, D. Watkins. Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4459–4473.CrossRefzbMATHGoogle Scholar
  4. 4.
    F. Assous, P. Ciarlet, E. Sonnendrucker. Résoludon des équations de Maxwell dans un domaine avec un coin rentrant. C. R. Acad. Sc. Paris, Série I 323 (1996) 203–208.MathSciNetzbMATHGoogle Scholar
  5. 5.
    I. Babuiška, J. E. Osborn. Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Camp. 52(186) (1989) 275–297.Google Scholar
  6. 6.
    K.-J. Bathe, C. Nitikitpaiboon, X. Wang. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction. Compur. & Structures 56(2–3) (1995) 225–237.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    F. Ben Belgacem, C. Bernardi, M. Costabel, M. Dauge. Un résultat de densité pour les équations de Maxwell. C. R. Acad. Sri. Paris Sér I Math. 324(6) (1997) 731–736.CrossRefzbMATHGoogle Scholar
  8. 8.
    A. N. Bespalov. Finite element method for the eigenmode problem of a RF cavity resonator. Soviet J. Numer. Anal Math. Modelling 3(3) (1988) 163–178.MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Birman, M. Solomyak. L 2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42(6) (1987) 75–96.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Birman, M. Solomyak. On the main singularities of the electric component of the electro-magnetic field in regions with screens. St. Petersbg. Math. J. 5(1) (1993) 125–139.MathSciNetGoogle Scholar
  11. 11.
    D. Boffi. Fortin operator and discrete compactness for edge elements. Numer Math. 87(2) (2000) 229–246.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    D. Boffi. A note on the de Rham complex and a discrete compactness property. Appl. Math. Lett. 14(1) (2001) 33–38.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    D. Boffi, F. Brezzi, L. Gastaldi. On the convergence of eigenvalues for mixed formulations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1–2) (1997) 131–154(1998). Dedicated to Ennio De Giorgi.MathSciNetzbMATHGoogle Scholar
  14. 14.
    D. Boffi, F Brezzi, L. Gastaldi. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69(229) (2000) 121–140.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    D. Boffi, L. Demkowicz, M. Costabel. Discrete competness for p and hp 2d edge finite elements, TICAM Report 02-21, Université de Bordeaux 1, 2002.Google Scholar
  16. 16.
    D. Boffi, R. G. Duran, L Gastaldi. A remark on spurious eigenvalues in a square. Appl. Math. Lett. 12(3) (1999) 107–114.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    D. Boffi, M. Farina, L Gastaldi. On the approximation of Maxwell’s eigenproblem in general 2D domains. Comput. & Structures 79 (2001)1089–1096.CrossRefGoogle Scholar
  18. 18.
    D. Boffi. P. Fernandes, L. Gastaldi. 1. Perugia. Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM I Numer Anal. 36 (1999) 1264–1290.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A.-S. Bonnet-Ben Dhia, C. Hazard, S. Lohrengel. A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM I Appl. Math. 59(6) (1999) 2028–2044 (electronic).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    S. Caorsi. R Fernandes, M. Raffetto. On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer Anal. 38(2) (2000) 580–607 (electronic).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    S. Caorsi, P. Fernandes. M. Raffetto. Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. M2AN Math. Model. Numer Anal. 35(2) (2001) 331–354.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    P. Ciarlet, Jr., C. Hazard, S. Lohrengel. Les équations de Maxwell dans un polyèdre: un résultat de densité. C. R. Acad. Sc. Paris, Série I Math. 326(11) (1998) 1305–1310.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    M. Costabel. A coercive bilinear form for Maxwell’s equations. J. Math. Anal. Appl. 157(2) (1991) 527–541.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    M. Costabel, M. Dauge. Espaces fonctionnels Maxwell: Les gentils, les méchants et les singularités. On line publication (Dec. 1998): http: // Scholar
  25. 25.
    M. Costabel. M. Dauge. Un résultat de densité pour les equations de Maxwell régularisées dans un domaine lipschitzien. C. R. Acad. Sc. Paris, Série I 327 (1998) 849–854.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    M. Costabel, M. Dauge. Maxwell and Lamé eigenvalues on polyhedra. Math. Meth. Appl. Sci. 22 (1999) 243–258.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    M. Costabel, M. Dauge. Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151(3) (2000) 221–276.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    M. Costabel, M. Dauge. Weighted regularization of Maxwell equations in polyhedral domains. Nunier Math. 93(2) (2002) 239–277.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    M. Costabel, M. Dauge, D. Martin. Numerical investigation of a boundary penalization method for Maxwell equations. In P. Neittaanmäki, T. Tiihonen, P. Tarvainen, editors, Proceedings of the 3rd European Conference on Numerical Mathematics and Advanced Applications, pp. 214–221. World Scientific, Singapore 2000.Google Scholar
  30. 30.
    M. Costabel, M. Dauge, D. Martin, G. Vial. Weighted regularization of Maxwell equations — computations in curvilinear polygons. In Proceedings of the 4th European Conference on Numerical Mathematics and Advanced Applications. Springer 2002.Google Scholar
  31. 31.
    M. Costabel, M. Dauge, S. Nicaise. Singularities of Maxwell interface problems. M2AN Math. ModeL Numer Anal. 33(3) (1999) 627–649.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    M. Costabel, M. Dauge, C. Schwab. Exponential convergence of the hp-FEM for the weighted regularization of Maxwell equations in polygonal domains. In preparation.Google Scholar
  33. 33.
    M. Crouzeix, P.-A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Infonnat. Recherche Opérationnelle Sér Rouge 7(R-3) (1973) 33–75.MathSciNetGoogle Scholar
  34. 34.
    M. Dauge. “Simple” corner-edge asymptotics. On line publication (Dec. 2000): Scholar
  35. 35.
    M. Dauge. Elliptic Boundary Value Problems in Corner Domains — smoothness and Asymptotics of Solutions. Lecture Notes in Mathematics, Vol. 1341. Springer-Verlag, Berlin 1988.Google Scholar
  36. 36.
    M. Dauge. Neumann and mixed problems on curvilinear polyhedra. Integral Equations Oper Theory. 15 (1992) 227–261.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    M. Dauge. Singularities of corner problems and problems of corner singularities. In Actes du 30ème Congrès d’Analyse Numérique: CANum '98 (Arles, 1998), pp. 1940 (electronic). Soc. Math. Appl. Indust., Paris 1999.Google Scholar
  38. 38.
    L. Demkowicz, P. Monk. Discrete compactness and the approximation of Maxwell’s equations in ℝ3. Math. Comp. 70 (2001) 507–523.MathSciNetzbMATHGoogle Scholar
  39. 39.
    J. Descloux. Essential numerical range of an operator with respect to a coercive form and the approximation of its spectrum by the Galerkin method. SIAM J. Numer. Anal. 18(6) (1981) 1128–1133.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    J. Descloux, N. Nassif, J. Rappaz. On spectral approximation. I. The problem of convergence. RAIRO Anal. Numér. 12(2) (1978) 97–112, iii.MathSciNetzbMATHGoogle Scholar
  41. 41.
    G. Fichera. Comportamento asintotico del campo elettrico e della densità elettrica in prossimità dei punti singolari della superficie conduttore. Rend. Sem. Mat. Univ. e Polirec. Torino 32(1973/74) 111–143.Google Scholar
  42. 42.
    N. Filonov. Système de Maxwell dans des domaines singuliers. Thesis, Université de Bordeaux 1, 1996.Google Scholar
  43. 43.
    E. Garcia. Résolution des équation de Maxwell instationnaires dans des domaine non convexe, Ia méthode du complément singulier. Thèse, Université Pierre et Marie Curie 2002.Google Scholar
  44. 44.
    L. Gastaldi. Mixed finite element methods in fluid structure systems. Numer Math. 74(2) (1996) 153–176.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    V. Girault, R Raviart. Finite Element Methods for the Navier—Stokes Equations, Theory and Algorithms. Springer series in Computational Mathematics, 5. Springer-Verlag, Berlin 1986.Google Scholar
  46. 46.
    P. Grisvard. Boundary Value Problems in Non-Smooth Domains. Pitman, London 1985.Google Scholar
  47. 47.
    C. Hazard. Numerical simulation of corner singularities: a paradox in Maxwell-like problems. C. R. Mecanique 330 (2002) 57–68.CrossRefzbMATHGoogle Scholar
  48. 48.
    C. Hazard, S. Lohrengel. A singular field method for Maxwell’s equations: Numerical aspects in two dimensions. SIAM J. Numer Anal. (2002) To appear.Google Scholar
  49. 49.
    R. Hiptmair. Finite elements in computational electromagnetism. Acta Numerica (2002) 237–339.Google Scholar
  50. 50.
    F. Kikuchi. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. In Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986). Vol. 64, pp. 509–521 1987.MathSciNetzbMATHGoogle Scholar
  51. 51.
    F. Kikuchi. On a discrete compactness property for the Nééhlec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(3) (1989) 479–490.MathSciNetzbMATHGoogle Scholar
  52. 52.
    V. A. Kondrat'ev. Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16(1967) 227–313.Google Scholar
  53. 53.
    R. Leis. Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien. Math. Z. 106 (1968) 213–224.MathSciNetCrossRefGoogle Scholar
  54. 54.
    D. Martin. Mélina. On line documentation: Scholar
  55. 55.
    S.A. Nazarov, B. A. Plamenevskii. Elliptic Problems in Domains with Piecewise Smooth Boundaries. Expositions in Mathematics 13. Walter de Gruyter, Berlin 1994.CrossRefzbMATHGoogle Scholar
  56. 56.
    J.-C. Nédélec. Mixed finite elements in ℝ3. Numer Math. 35 (1980) 315–341.MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    J.-C. Nédélec. A new family of mixed finite elements in ℝ3. Numer Math. 50(1)(1986) 57–81.MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    K. Preiss, O. Biró, I. Ticar. Gauged current vector potential and reentrant corners in the FEM analysis of 3D eddy currents. IEEE Transactions on Magnetics 36(4) (2000) 840–843.CrossRefGoogle Scholar
  59. 59.
    B-A. Raviart, J. M. Thomas. Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comp. 31(138) (1977) 391–413.MathSciNetzbMATHGoogle Scholar
  60. 60.
    H. Schmitz, K. Volk, W. Wendland. Three-dimensional singularities of elastic fields near vertices. Numer Methods Partial Differential Equations 9(3) (1993) 323–337.MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    C. Schwab. p-and hp-finite element methods. Theory and applications in solid and fluid mechanics. The Clarendon Press Oxford University Press, New York 1998.zbMATHGoogle Scholar
  62. 62.
    M. Sun, C. Xenophontos. Reliability of an hp algorithm for buckling analysis. Proceedings of IASS-IACM 2000, Fourth International Colloquium on Computation of Shell and Spatial Structures, 2000 (CD-Rom).Google Scholar
  63. 63.
    H. Vandeven. On the eigenvalues of second-order spectral differentiation operators. Comput. Methods Appl. Mech. Engrg. 80(1–3) (1990) 313–318. Spectral and high order methods for partial differential equations (Conio, 1989).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Martin Costabel
    • 1
  • Monique Dauge
    • 1
  1. 1.IRMARUniversité de Rennes 1RennesFrance

Personalised recommendations