Fast, High-Order, High-Frequency Integral Methods for Computational Acoustics and Electromagnetics

  • Oscar P. Bruno
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 31)


We review a set of algorithms and methodologies developed recently for the numerical solution of problems of scattering by complex bodies in three-dimensional space. These methods, which are based on integral equations, high-order integration, Fast Fourier Transforms and highly accurate high-frequency integrators, can be used in the solution of problems of electromagnetic and acoustic scattering by surfaces and penetrable scatterers — even in cases in which the scatterers contain geometric singularities such as comers and edges. All of the solvers presented here exhibit high-order convergence, they run on low memories and reduced operation counts, and they result in solutions with a high degree of accuracy. In particular, our approach to direct solution of integral equations results in algorithms that can evaluate accurately in a personal computer scattering from hundred-wavelength-long objects — a goal, otherwise achievable today only by super-computing. The high-order high-frequency methods we present, in turn, are efficient where our direct methods become costly, thus leading to an overall computational methodology which is applicable and accurate throughout the electromagnetic spectrum.


Fourier Series Trapezoidal Rule Helmholtz Equation Singular Surface Fast Multipole Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. R. Aberegg and A. F. Peterson, Application of the integral equation-asymptotic phase method to two-dimensional scattering. IEEE Transactions on Antennas and Propagation 43 534–537 (1995).CrossRefGoogle Scholar
  2. 2.
    M. Abramowitz and I. Stegun Handbook of mathematical functions with formulas, graphs, and mathematical tables, US Dept Commerce (June 1964).Google Scholar
  3. 3.
    C. R. Anderson, An implementation of the fast raultipole method without multlpoles, SIAM J. Sci. Stat. Comput. 13, 923–947 (1992).CrossRefzbMATHGoogle Scholar
  4. 4.
    C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill (1978).Google Scholar
  5. 5.
    G. Beylkin, On the fast fourier transform of functions with singularities, Applied Computational Harmonic Analysis, 2 363–381 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    N. Bleistein and R.A. Handelsman, Asymptotic expansions of integrals, Dover Publications, New York (1986).Google Scholar
  7. 7.
    E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems. Radio Science 31, 1225–1251 (1996).CrossRefGoogle Scholar
  8. 8.
    N. Bojarski, The k-space formulationof the scattering problem in the time domain, J. Acoust. Soc. Am. 72, 570–584 (1982).CrossRefzbMATHGoogle Scholar
  9. 9.
    A. Brandt and A. A. Lubrecht, Multilevel matrix multiplication and fast solution of integral equations, J. Comput. Phys. 90, 348–370 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    O. P. Bruno and L. A. Kunyansky, A Fast, High-Order Algorithm for the Solution of Surface Scattering Problems: Basic Implementation, Tests, and Applications J. Comput. Phys. 169, 80–110 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    O. P. Bruno and L. A. Kunyansky, Surface scattering in 3-D: an accelerated high order solver. Proc. R. Soc. Lond. A 457, 2921–2934 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    O. Bruno, C. Geuzaine and A. Monro, Rigorous high-frequency solvers for electromagnetic and acoustic scattering: convex scatterers. In preparation.Google Scholar
  13. 13.
    O. Bruno and M. Hyde, High order solution of scattering by penetrable bodies. In preparation.Google Scholar
  14. 14.
    O. Brunoand M. Hyde, bl]A fast high-order method for scattering by three-dimensional inhomgogeneous media. In preparation.Google Scholar
  15. 15.
    O. P. Bruno and L. A. Kunyansky, High-Order Fourier approximation in Scattering by two-dimensional inhmogeneous media. In preparation.Google Scholar
  16. 16.
    O. Bruno and M. Pohlman, Fast, High-order surface representation of smooth and singular surfaces. In preparation.Google Scholar
  17. 17.
    O. Bruno and R. Paffenroth, Fasster: A fast, parallel, high-order surface scattering solver. In preparation.Google Scholar
  18. 18.
    O. Bruno and F. Reitich, A fast high-order algorithm for evaluation of electromagnetic scattering from thin penetrable bodies. In preparation.Google Scholar
  19. 19.
    O. Bruno and F. Reitich, Rigorous high-frequency solvers for electromagnetic and acoustic scattering: non-convex scatterers and multiple scattering. In preparation.Google Scholar
  20. 20.
    O. Bruno and F. Reitich, Numerical solution of diffraction problems: a method of variation of boundaries I, II, III, J. Opt. Soc. A 10, 1168–1175, 2307–2316, 2551–2562 (1993).CrossRefGoogle Scholar
  21. 21.
    O. Bruno and A. Sei, A high order solver for problems of scattering by heterogeneous bodies, Proc. of the 13-th Annual Review of Progress in Applied Computational Electromagnetism (Applied Computational Electromagnetics Society), 1296–1302 (1997)Google Scholar
  22. 22.
    O. Bruno and A. Sei, A fast high-order solver for EM scattering from complex penetrable bodies: TE case; IEEE Trans. Antenn. Propag. 48, 1862–1864 (2000).MathSciNetCrossRefGoogle Scholar
  23. 23.
    O. Bruno and A. Sei, A fast high-order solver for problems of scattering by heterogeneous bodies; To appear in IEEE Trans. Antenn.Propag.Google Scholar
  24. 24.
    O. Bruno, A. Sei and M. Caponi, High-order high-frequency solution of rough surface scattering problems. Radio Science 37, 2-1–3–2-13 (2002).CrossRefGoogle Scholar
  25. 25.
    L. Canino, J. Ottusch, M. Stalzer, J, Visher and S. Wandzura, Numerical solution of the Helmholtz equation using a High-Order Nystrom Discretization, J. Comp. Phys. 146, 627–663 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    M. F. Catedra, E. Cago, and L. Nuno, A Numerical Scheme to Obtain the RCS of Three-Dimensional Bodies of Resonant Size Using the Conjugate Gradient Method and the Fast Fourier Transform, IEEE Trans. Antennas Propag. 37, 528–537 (1989).CrossRefGoogle Scholar
  27. 27.
    R. Coifman, V. Rokhlin, and S. Wandzura, The Fast Multipole Method for the Wave Equation: A Pedestrian Prescription, IEEE Antennas and Propagation Magazine 35, 7–12, (1993).CrossRefGoogle Scholar
  28. 28.
    D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Springer-Veriag, Berlin/Heidelberg (1998).zbMATHGoogle Scholar
  29. 29.
    R. Courant and D. Hilbert, Methods of mathematical physics, Wiley (1953).Google Scholar
  30. 30.
    I. Daubechies, I. Guskov, P. Schröder and W. Sweldens, Wavelets on irregular point sets Phil. Trans. R. Soc. Lond. A 357, 2397–2413 (1999).CrossRefzbMATHGoogle Scholar
  31. 31.
    B. Dembart and E. Yip, The accuracy of Fast Multipole Methods for Maxwell’s Equations, IEEE Computational Science and Engineering 4, 48–56 (1998).CrossRefGoogle Scholar
  32. 32.
    M. Desbrun, M. Meyer and P. Alliez, Intrinsic Parametrizations of Surface Meshes, Eurographics 2002 21, G. Drettakis and H. P Seidel, Eds. (2002).Google Scholar
  33. 33.
    J. W. Duijndam and M. A. Schonewille, Nonuniform fast Fourier transform, Geophysics 64 (1999).Google Scholar
  34. 34.
    A. Dutt and V. Rokhlin, Fast fourier transforms for nonequispaced data, SIAM Journal of Scientific Computing, 14 1368–1393 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data, ii. Applied and Computational Harmonic Analysis, 2 85–100 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    M. Epton and B. Dembart, Multipole Translation Theory for the Three-Dimensional Laplace and Helmholtz Equations, SIAM J. Sci. Comput. 16, 865–897, (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall (1973).Google Scholar
  38. 38.
    V. A. Fock, Electromagnetic Diffraction and Propagation Problems. Elmsford, NY, Pergamon (1965).Google Scholar
  39. 39.
    G. Liu and S. Gedney, High-order Nyström solution of the volume EFIE for TM-wave scattering, Microwave and Optical Technology Letters 25, 8–11 (2000).CrossRefGoogle Scholar
  40. 40.
    G. H. Golub and C. F. Van Loan, Matrix Computations (Second Ed.), John Hopkins (1993).Google Scholar
  41. 41.
    A. Greenbaum, L. Greengard and G. McFadden, Laplace equation and the Dirichlet-Neumann map in multiply connected domains. J. Comput. Phys. 105, 267–278 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    L. Greengard, J. F. Huang, V. Rokhlin, and S. Wandzura, Accelerating fast multipole methods for the Helmholtz equation at low frequencies, IEEE Comput. Sci. Eng. 5, 32–38 (1998).CrossRefGoogle Scholar
  43. 43.
    M. Hyde and O. Bruno, Two-dimensional scattering by an inhomogeneous medium. In preparation.Google Scholar
  44. 44.
    R. M. James, A contribution to scattering calculation for small wavelengths—the high frequency panel method, IEEE Transactions on Antennas and Propagation, 38 1625–1630 (1990).CrossRefGoogle Scholar
  45. 45.
    J. B. Keller and R. M. Lewis, Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equations. Vol. I of Surveys in Applied Mathematics, pp. 1–82, Plenum Press, New York (1995).Google Scholar
  46. 46.
    L. A. Kunyansky and O. P. Bruno, A Fast, High-Order Algorithm for the Solution of Surface Scattering Problems II. Theoretical considerations. Submitted.Google Scholar
  47. 47.
    C. Labreuche, A convergence theorem for the fast multipole method for 2 dimensional scattering problems. Mathematics of computation 67, 553–591 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    R. T. Ling, Numerical solution for the scattering of sound waves by a circular cylinder, AIAA Journal. 25 560–566 (1987).CrossRefGoogle Scholar
  49. 49.
    E. Martensen, Über eine methode zum räumhchen Neumannschen problem mit einer anwendung für torusartige berandungen, Acta Math. 109, 75–135 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    J. R. Mautz and R. F. Harrington, A combined-source solution for radiation and scattering from a perfectly conducting body, IEEE Transactions on Antennas and Propagation, AP-27 445–454 (1979).CrossRefGoogle Scholar
  51. 51.
    J. R. Phillips and J. K. White, A Precorrected-FFT Method for Electrostatic Analysis of Complicated 3-D Structures, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 16, 1059–1072 (1997).CrossRefGoogle Scholar
  52. 52.
    V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys. 60, 187–207 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions, J. Comput. Phys. 86, 414–439 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    V. Rokhlin, Diagonal Form of Translation Operators for the Helmholtz equation in Three Dimensions, Applied and Computational Harmonic Analysis 1, 82–93 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 857–869 (1986).MathSciNetGoogle Scholar
  56. 56.
    J. M. Song, C. C. Lu, W. C. Chew, and S. W. Lee, Fast Illinois Solver Code (FISC), IEEE Antenna and Propagation Magazine 40, 27–34 (1998).CrossRefGoogle Scholar
  57. 57.
    J. M. Song, C. C. Lu, and W. C. Chew, Multilevel Fast Muhipole Algorithm for Electromagnetic Scattering by Large Complex Objects, IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).CrossRefGoogle Scholar
  58. 58.
    G. M. Vainikko, Fast solvers of the Lippmann-Schwinger equation, in Direct and Inverse Problems of Mathematical Physics, R. P. Gilbert and J. Kajiwara and Y. S, Xu Eds. (2000).Google Scholar
  59. 59.
    A.G. Voronovich, Wave scattering from rough surfaces. Springer-Veriag, Berlin (1994).CrossRefzbMATHGoogle Scholar
  60. 60.
    A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. Sanders, Benchmark Radar Targets for the Validation of Computational Electromagnetics Programs, IEEE Antennas and Propagation Magazine 35, 84–89 (1993).CrossRefGoogle Scholar
  61. 61.
    X. M. Xu and Q. H. Liu, Fast spectral-domain method for acoustic scattering problems, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 48, 522–529 (2001).CrossRefGoogle Scholar
  62. 62.
    P. Zwamborn and P. Van den Berg, Three dimensional weak form of the conjugate gradient EFT method for solving scattering problems, IEEE Trans. Microwave Theory Tech. 40, 1757–1766 (1992).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Oscar P. Bruno
    • 1
  1. 1.Applied and Computational Mathematics, CaltechPasadenaUSA

Personalised recommendations