Advertisement

The Genomics of Xanthomonas oryzae

  • Lindsay Triplett
  • Ralf Koebnik
  • Valerie Verdier
  • Jan E. LeachEmail author
Chapter

Abstract

Xanthomonas oryzae pathovars oryzae and oryzicola cause bacterial leaf blight and bacterial leaf streak of rice, respectively, two diseases that pose a significant threat to global rice yields. The first four complete genome sequences of X. oryzae strains yielded a wealth of information about virulence factor content, mobile genetic elements, and taxonomic differences among strains of X. oryzae pathovars oryzae and oryzicola. The genomes have been applied in systematic studies of gene function and expression and in comparative analyses of the differences between pathovars. X. oryzae genome sequences facilitated the current understanding of the evolutionary history and diversity of type III secreted effectors, including transcriptional activator-like (TAL) effectors, and contributed to the discovery of the code-mediating TAL effector recognition specificity. The genomes have also been instrumental in the development of improved tools for epidemiological typing and disease diagnostics. This chapter focuses on the contributions of genomic sequencing projects to the understanding of X. oryzae biology and diversity and the future questions that genomics will help address.

Keywords

Insertion Sequence Bacterial Blight NRPS Gene Diffusible Signal Factor Xanthomonas Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adachi N, Oku T (2000) PCR-mediated detection of Xanthomonas oryzae pv. oryzae by amplification of the 16S-23S rDNA spacer region sequence. J Gen Plant Pathol 66:303–309Google Scholar
  2. Akimoto-Tomiyama C, Furutani A, Tsuge S, Washington EJ, Nishizawa Y, Minami E, Ochiai H (2012) XopR, a type III effector secreted by Xanthomonas oryzae pv. oryzae, suppresses microbe-associated molecular pattern-triggered immunity in Arabidopsis thaliana. Mol Plant Microbe Interact 25:505–514PubMedGoogle Scholar
  3. Aldrick SJ, Buddenhagen IW, Reddy APK (1973) The occurrence of bacterial leaf blight in wild and cultivated rice in Northern Australia. Crop Pasture Sci 24:219–227Google Scholar
  4. Awoderu VA, John VT (1984) Occurrence of bacterial leaf blight on rice in four Sahelian countries: Senegal, Mali, Niger and Upper Volta. WARDA Technol Newsl 5:36–39Google Scholar
  5. Bai J, Choi SH, Ponciano G, Leung H, Leach JE (2000) Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol Plant Microbe Interact 13:1322–1329PubMedGoogle Scholar
  6. Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868PubMedGoogle Scholar
  7. Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, Cherkis K, Roach J, Grant SR, Jones CD, Dangl JL (2012) Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Path 7(7):e1002132Google Scholar
  8. Bart R, Cohn M, Kassen A, McCallum EJ, Shybut M, Petriello A, Krasileva K, Dahlbeck D, Medina C, Alicai T, Kumar L, Moreira LM, Neto JR, Verdier V, Santana MA, Kositcharoenkul N, Vanderschuren H, Gruissem W, Bernal A, Staskawicz BJ (2012) High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proc Natl Acad Sci USA 109(28):E1972–E1979. doi: 10.1073/pnas.1208003109 PubMedCentralPubMedGoogle Scholar
  9. Bhasin H, Bhatia D, Raghuvanshi S, Lore JS, Sahi GK, Kaur B, Vikal Y, Singh K (2012) New PCR-based sequence-tagged site marker for bacterial blight resistance gene Xa38 of rice. Mol Breeding 30:607–611Google Scholar
  10. Bichsel M, Barbour AD, Wagner A (2013) Estimating the fitness effect of an insertion sequence. J Math Biol 66:95–114PubMedGoogle Scholar
  11. Blair MW, Garris AJ, Iyer AS, Chapman B, Kresovich S, McCouch SR (2003) High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.). Theor Appl Genet 107(1):62–73PubMedGoogle Scholar
  12. Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denance N, Vasse J, Lauber E, Arlat M (2007) Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE 2:e224PubMedCentralPubMedGoogle Scholar
  13. Block A, Alfano JR (2011) Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? Curr Opin Microbiol 14(1):39–46. doi: 10.1016/j.mib.2010.12.011 PubMedCentralPubMedGoogle Scholar
  14. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436. doi: 10.1146/annurev-phyto-080508-081936 PubMedGoogle Scholar
  15. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512. doi: 10.1126/science.1178811 PubMedGoogle Scholar
  16. Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193(19):5450–5464. doi: 10.1128/JB.05262-11 PubMedCentralPubMedGoogle Scholar
  17. Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401. doi: 10.1016/j.pbi.2010.04.010 PubMedGoogle Scholar
  18. Bonas U, Stall RE, Staskawicz B (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218:127–136PubMedGoogle Scholar
  19. Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40:e117PubMedCentralPubMedGoogle Scholar
  20. Buddenhagen IW (1985) Rice disease evaluation in Madagascar. Int Rice Commiss Newsl 34:74–78Google Scholar
  21. Chamnongpol S, Vattanaviboon P, Loprasert S, Mongkolsuk S (1995) Atypical oxidative stress regulation of a Xanthomonas oryzae pv. oryzae monofunctional catalase. Can J Microbiol 41:541–547Google Scholar
  22. Chan JZM, Pallen MJ, Oppenheim B, Constantinidou C (2012) Genome sequencing in clinical microbiology. Nat Biotechnol 30 (11):1068Google Scholar
  23. Chatterjee S, Sankaranarayanan R, Sonti RV (2003) PhyA, a secreted protein of Xanthomonas oryzae pv. oryzae, is required for optimum virulence and growth on phytic acid as a sole phosphate source. Mol Plant Microbe Interact 16(11):973–982PubMedGoogle Scholar
  24. Chatterjee S, Sonti RV (2002) rpfF mutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. Mol Plant Microbe Interact 15:463–471PubMedGoogle Scholar
  25. Chatterjee S, Sonti RV (2005) Virulence deficiency caused by a transposon insertion in the purH gene of Xanthomonas oryzae pv. oryzae. Can J Microbiol 51(7):575–581PubMedGoogle Scholar
  26. Chaudhary SU, Iqbal J, Hussain M (2012) Effectiveness of different fungicides and antibiotics against bacterial leaf blight in rice. J Agric Res 50:109–117Google Scholar
  27. Chen C, Zheng W, Huang X, Zhang D, Lin XQ (2006) Major QTL conferring resistance to bacterial leaf streak. Agric Sci China 5:216–220Google Scholar
  28. Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211PubMedGoogle Scholar
  29. Cheong H, Kim C-Y, Jeon J-S, Lee B-M, Moon JS, Hwang I (2013) Xanthomonas oryzae pv. oryzae type III effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice. PLoS ONE 8(9):e73346PubMedCentralPubMedGoogle Scholar
  30. Chin C-S, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamaichi Y, Calderwood SB, Mekalanos JJ, Schadt EE, Waldor MK (2011) The origin of the Haitian cholera outbreak strain. New Eng J Med 364(1):33–42. doi: 10.1056/NEJMoa1012928 PubMedCentralPubMedGoogle Scholar
  31. Chittoor JM, Leach JE, White FF (1997) Differential induction of a peroxidase gene family during infection of rice by Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 10:861–871PubMedGoogle Scholar
  32. Cho MS, Kang MJ, Kim CK, Seol Y-J, Hahn JH, Park SC, Hwang DJ, Ahn T-Y, Park DH, Lim CK (2011) Sensitive and specific detection of Xanthomonas oryzae pv. oryzae by real-time bio-PCR using pathovar-specific primers based on an rhs family gene. Plant Dis 95:589–594Google Scholar
  33. Choi SH, Leach JE (1994) Genetic manipulation of Xanthomonas oryzae pv. oryzae. Int Rice Res Notes 19:31–32Google Scholar
  34. Cunnac S, Chakravarthy S, Kvitko BH, Russell AB, Martin GB, Collmer A (2011) Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. Proc Natl Acad Sci USA 108:2975–2980. doi: 10.1073/pnas.1013031108 |PII:031108PubMedCentralPubMedGoogle Scholar
  35. Daniels MD, Leach JE (1993) Genetics of Xanthomonas. In: Swings JG, Civerolo EL (eds) Xanthomonas. Chapman and Hall, London, pp 301–339Google Scholar
  36. Devadath S (1989) Chemical control of bacterial blight of rice. Bacterial blight of rice International Rice Research Institute. Manila, Philippines, pp 89–98Google Scholar
  37. Dharmapuri S, Sonti RV (1999) A transposon insertion in the gumG homologue of Xanthomonas oryzae pv. oryzae causes loss of extracellular polysaccharide production and virulence. FEMS Microbiol Lett 179:53–59PubMedGoogle Scholar
  38. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, VanDyk JK, Bogdanove AJ (2012) TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40:W117–W122PubMedCentralPubMedGoogle Scholar
  39. Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ (2013) TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol. doi: 10.1016/j.tcb.2013.04.003 PubMedGoogle Scholar
  40. Driscoll JR (2009) Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex. Methods Mol Biol 551:117–128PubMedGoogle Scholar
  41. Fang CT, Ren HC (1959) Further studies on the relationship of Leersia spp. with the bacterial leaf blight and the bacterial leaf streak disease of rice. Acta Phytopathol Sinica 2:004Google Scholar
  42. Ferreira-Tonin M, Rodrigues-Neto J, Harakava R, Destefano SAL (2011) Phylogenetic analysis of Xanthomonas based on partial rpoB gene sequences and species differentiation by PCR-RFLP. Int J Syst Evol Microbiol 62:1419–1424PubMedGoogle Scholar
  43. Furutani A, Nakayama T, Ochiai H, Kaku H, Kubo Y, Tsuge S (2006) Identification of novel HrpXo regulons preceded by two cis-acting elements, a plant-inducible promoter box and a -10 box-like sequence, from the genome database of Xanthomonas oryzae pv. oryzae. FEMS Microbiol Lett 259:133–141PubMedGoogle Scholar
  44. Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Ochiai H, Tsuge S (2009) Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 22:96–106PubMedGoogle Scholar
  45. Ghasemie E, Kazempour MN, Padasht F (2008) Isolation and identification of Xathomonas oryzae pv. oryzae the causal agent of bacterial blight of rice in Iran. J Plant Protect Res 48:53–62Google Scholar
  46. Gnanamanickam SS, Priyadarisini VB, Narayanan NN, Vasudevan P, Kavitha S (1999) An overview of bacterial blight disease of rice and strategies for its management. Curr Sci 77(11):1435–1444Google Scholar
  47. Goel AK, Rajagopal L, Sonti RV (2001) Pigment and virulence deficiencies associated with mutations in the aroE gene of Xanthomonas oryzae pv. oryzae. Appl Environ Microbiol 67:245–250PubMedCentralPubMedGoogle Scholar
  48. Goncalves ER, Rosato YB (2002) Phylogenetic analysis of Xanthomonas species based upon 16S-23S rDNA intergenic spacer sequences. Int J Syst Bacteriol 52:355–361Google Scholar
  49. Gonzalez C, Szurek B, Manceau C, Mathieu T, Sere Y, Verdier V (2007) Molecular and pathotypic characterization of new Xanthomonas oryzae strains from West Africa. Mol Plant Microbe Interact 20:534–546. doi: 10.1094/MPMI-20-5-0534 PubMedGoogle Scholar
  50. Gonzalez JF, Degrassi G, Devescovi G, De Vleesschauwer D, Hafte M, Myers MP, Venturi V (2012) A proteomic study of Xanthomonas oryzae pv. oryzae in rice xylem sap. J Proteomics doi: 10.1016/j.jprot.2012.07.019
  51. González JF, Myers MP, Venturi V (2012) The inter-kingdom solo OryR regulator of Xanthomonas oryzae is important for motility. Mol Plant Pathol 14:211–221PubMedGoogle Scholar
  52. Grau J, Wolf A, Reschke M, Bonas U, Posch S, Boch J (2013) Computational predictions provide insights into the biology of TAL effector target sites. PLoS Comput Biol 9:e1002962PubMedCentralPubMedGoogle Scholar
  53. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang GL, White FF, Yin Z (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435(7045):1122–1125PubMedGoogle Scholar
  54. Guo A, Leach JE (1989) Examination of rice hydathode water pores exposed to Xanthomonas campestris pv. oryzae. Phytopathology 79(4):433–436Google Scholar
  55. Guo W, Cui Y-P, Li Y-R, Che Y-Z, Yuan L, Zou L-F, Zou H-S, Chen G-Y (2012) Identification of seven Xanthomonas oryzae pv. oryzicola genes potentially involved in pathogenesis in rice. Microbiology 158:505–518. doi: 10.1099/mic.0.050419-0 PubMedGoogle Scholar
  56. Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012) Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of Xanthomonas oryzae. Mol Plant Pathol 13(3):288–302. doi: 10.1111/j.1364-3703.2011.00745.x PubMedGoogle Scholar
  57. Han QD, Chen ZW, Deng Y, Lan T, Guan HZ, Duan YL, Zhou YC, Lin MC, Wu WR (2008) Fine mapping of qBlsr5a, a QTL controlling resistance to bacterial leaf streak in rice. Acta Agron Sin 34:587–590Google Scholar
  58. He WA, Huang DH, Li RB, Qiu YF, Song JD, Yang HN, Zheng JX, Huang YY, Li XQ, Liu C, Zhang YX, Ma ZF, Yang Y (2012) Identification of a resistance gene bls1 to bacterial leaf streak in wild rice Oryza rufipogon Griff. J Integr Ag 11:962–969Google Scholar
  59. Hopkins CM, White FF, Choi SH, Guo A, Leach JE (1992) Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 5:451–459PubMedGoogle Scholar
  60. Hummel AW, Doyle EL, Bogdanove AJ (2012) Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytol 195:883–893PubMedGoogle Scholar
  61. Ichida H, Maeda K, Ichise H, Matsuyama T, Abe T, Yoneyama K, Koba T (2007) In silco restriction landmark genome scanning analysis of Xanthomonas oryzae pathovar oryzae MAFF 311018. Biochem Biophys Res Commun 363:852–856PubMedGoogle Scholar
  62. Iyer AS, McCouch SR (2004) The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact 17(12):1348–1354PubMedGoogle Scholar
  63. Jacobs JM, Babujee L, Meng F, Milling A, Allen C (2012) The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. mBio 3:e00114–00112. doi: 10.1128/mBio.00114-12
  64. Jeung JU, Heu SG, Shin MS, Vera Cruz CM, Jena KK (2006) Dynamics of Xanthomonas oryzae pv. oryzae populations in Korea and their relationship to known bacterial blight resistance genes. Phytopathology 96:867–875. doi: 10.1094/PHYTO-96-0867 PubMedGoogle Scholar
  65. Jha G, Rajeshwari R, Sonti RV (2007) Functional interplay between two Xanthomonas oryzae pv. oryzae secretion systems in modulating virulence on rice. Mol Plant Microbe Interact 20(1):31–40PubMedGoogle Scholar
  66. Jones RK, Barnes LW, Gonzalez CF, Leach JE, Alvarez AM, Benedict AA (1989) Identification of low virulence strains of Xanthomonas campestris pv. oryzae from rice in the United States. Phytopathology 79:984–990Google Scholar
  67. Kang MJ, Shim JK, Cho MS, Seol YJ, Hahn JH, Hwang DJ, Park DS (2008) Specific detection of Xanthomonas oryzae pv. oryzicola in infected rice plant by use of PCR assay targeting a membrane fusion protein gene. J Microbiol Biotechnol 18:1492PubMedGoogle Scholar
  68. Katzen F, Ferreiro DU, Oddo CG, Lelmini MV, Becker A, Pauhler A, Lelpi L (1998) Xanthomonas campestris pv. campestris gum mutants: Effects on xanthan biosynthesis and plant virulence. J Bacteriol 180:1607–1617PubMedCentralPubMedGoogle Scholar
  69. Kauffman H, Reddy A, Hsiek S, Merca S (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57:537–541Google Scholar
  70. Khush GS, Angeles ER (1999) A new gene for resistance to race 6 of bacterial blight in rice, Oryza sativa L. Rice Genet Newsl 16:92–93Google Scholar
  71. Kim S, Kim J, Lee B, Cho J (2009) Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv. oryzae. Biotech Lett 31:265–270Google Scholar
  72. Korlach J (2012) Single molecule, Real-Time DNA sequencing yields a clearer picture of biological complexity: Helps scientists close genomes, study linked variants, and detect base modifications. Indust Biotechnol 8(6):333–336Google Scholar
  73. Lang JM, Hamilton JP, Diaz MGQ, Van Sluys MA, Burgos MRG, Cruz CMV, Buell CR, Tisserat NA, Leach JE (2010) Genomics-based diagnostic marker development for Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. Plant Dis 94:311–319. doi: 10.1094/Pdis-94-3-0311 Google Scholar
  74. Lang JM, Langlois P, Nguyen MHR, Triplett LR, Purdie L, Holton T, Djikeng A, Vera Cruz CM, Verdier V, Leach JE (2014) Sensitive detection of Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola by loop mediated isothermal amplification. Appl Environ Microbiol AcceptedGoogle Scholar
  75. Leach JE, Leung H, Nelson RJ, Mew TW (1995) Population biology of Xanthomonas oryzae pv. oryzae and approaches to its control. Curr Opin Biotechnol 6:298–304Google Scholar
  76. Leach JE, Vera-Cruz CM, Bai J, Leung H (2001) Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu Rev Phytopathol 39:187–224PubMedGoogle Scholar
  77. Leach JE, White FF (1996) Bacterial avirulence genes. Annu Rev Phytopathol 34:153–179PubMedGoogle Scholar
  78. Lee BM, Park YJ, Park DS, Kang HW, Kim JG, Song ES, Park IC, Yoon UH, Hahn JH, Koo BS, Lee GB, Kim H, Park HS, Yoon KO, Kim JH, Jung CH, Koh NH, Seo JS, Go SJ (2005) The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33:577–586PubMedCentralPubMedGoogle Scholar
  79. Lee SW, Han SW, Bartley LE, Ronald PC (2006) Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA 103:18395–18400PubMedCentralPubMedGoogle Scholar
  80. Lee SW, Choi SH, Han SS, Lee DG, Lee BY (1999) Distribution of Xanthomonas oryzae pv. oryzae strains virulent to Xa21 in Korea. Phytopathology 89:928–933PubMedGoogle Scholar
  81. Lei Y, Kang S, Gao J, Jia XS, Chen LL (2013) Improved annotation of a plant pathogen genome Xanthomonas oryzae pv. oryzae PXO99A. J Biomolec Struct Dyn 31:342–350. doi: 10.1080/07391102.2012.698218 Google Scholar
  82. Leung H, Zhu Y, Revilla-Molina I, Fan JX, Chen H, Pangga I, Vera Cruz C, Mew TW (2003) Using genetic diversity to achieve sustainable rice disease management. Plant Dis 87:11561169Google Scholar
  83. Li C, Tao J, Mao D, He C (2011) A novel manganese efflux system, YebN, is required for virulence by Xanthomonas oryzae pv. oryzae. PLoS ONE 6:e21983PubMedCentralPubMedGoogle Scholar
  84. Li G, Song CF, Pang XM, Yang Y, Wang JS (2009a) Analysis of pathotypic and genotypic diversity of Xanthomonas oryzae pv. oryzae in China. J Phytopathol 157:208–218. doi: 10.1111/j.1439-0434.2008.01471.x Google Scholar
  85. Li J, Wang N (2011) Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation. PLoS ONE 6(7):e21804PubMedCentralPubMedGoogle Scholar
  86. Li P, Lu X, Shao M, Long J, Wang J (2004) Genetic diversity of Harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Sci China Series C: Life Sci 47:461–469Google Scholar
  87. Li T, Huang S, Zhou J, Yang B (2013) Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. Mol Plant doi: 10.1093/mp/sst034
  88. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390–392PubMedGoogle Scholar
  89. Li W, Raoult D, Fournier PE (2009b) Bacterial strain typing in the genomic era. FEMS Micro Rev 33:892–916Google Scholar
  90. Liu H, Yang W, Hu B, Liu F (2007) Virulence analysis and race classification of Xanthomonas oryzae pv. oryzae in China. J Phytopathol 155:129–135. doi: 10.1111/j.1439-0434.2007.01197.x Google Scholar
  91. Llano AI (1999) Factors affecting the development of bacterial leaf streak of rice (Oryza sativa L.) caused by Xanthomonas oryzae pv. oryzicola Swings et al.Google Scholar
  92. Loman NJ, Constantinidou C, Chan JZM, Halachev M, Sergeant M, Penn CW, Robinson ER, Pallen MJ (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 9:599–606Google Scholar
  93. Lozano JC (1977) Identification of bacterial blight in rice, caused by Xanthomonas oryzae, in America. Plant Dis Rep 61:644–648Google Scholar
  94. Lu H, Patil P, Van Sluys MA, White FF, Ryan RP, Dow JM, Rabinowicz P, Salzberg SL, Leach JE, Sonti R, Brendel V, Bogdanove A (2009) Acquisition and evolution of plant pathogenesis–associated gene clusters and candidate determinants of tissue-specificity in Xanthomonas. PLoS ONE 3(11):e3828Google Scholar
  95. Lv Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X (2013) Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology 103:594–599PubMedGoogle Scholar
  96. Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62(3):725–774PubMedCentralPubMedGoogle Scholar
  97. Mew TW (1993) Xanthomonas oryzae pathovars on rice: cause of bacterial blight and bacterial leaf streak. In: Swings JG, Civerolo EL (eds) Xanthomonas. Chapman and Hall, London, pp 30–40Google Scholar
  98. Mew TW, Alvarez AM, Leach JE, Swings J (1993) Focus on bacterial blight of rice. Plant Dis 77:5–12Google Scholar
  99. Mew TW, Mew IC, Huang J (1984) Scanning electron microscopy of virulent and avirulent strains of Xanthomonas campestris pv. oryzae on rice leaves. Phytopathology 74:635–641Google Scholar
  100. Mew TW, Vera C, C. M., Medalla ES (1992) Changes in race frequency of Xanthomonas oryzae pv. oryzae in response to rice cultivars planted in the Philippines. Plant Dis 76:1029Google Scholar
  101. Meyer DF, Bogdanove AJ (2009) Genomics-driven advances in Xanthomonas biology. In: Jackson RW (ed) Plant pathogenic bacteria: genomics and molecular biology. Horizon scientific press, UK, p 147–161Google Scholar
  102. Min J, Lin D, Zhang Q, Zhang J, Yu Z (2012) Structure-based virtual screening of novel inhibitors of the uridyltransferase activity of Xanthomonas oryzae pv. oryzae GlmU. Eur J Med Chem 53:150–158PubMedGoogle Scholar
  103. Mira A, Pushker R, Rodriguez-Valera F (2006) The Neolithic revolution of bacterial genomes. Trends Micro 14(5):200–206Google Scholar
  104. Morales CQ, Posada J, Macneale E, Franklin D, Rivas I, Bravo M, Minsavage J, Stall RE, Whalen MC (2005) Functional analysis of the early chlorosis factor gene. Mol Plant Microbe Interact 18(5):477–486. doi: 10.1094/MPMI-18-0477 PubMedGoogle Scholar
  105. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501. doi: 10.1126/science.1178817 PubMedGoogle Scholar
  106. Noda T, Yamamoto T, Kaku H, Horino O (1996) Geographical distribution of pathogenic races of Xanthomonas oryzae pv. oryzae in Japan in 1991 and 1993. Ann Phytopathol Soc Jpn 62:549–553Google Scholar
  107. Ochiai H, Horino O, Miyajima K, Kaku H (2000) Genetic diversity of Xanthomonas oryzae pv. oryzae strains from Sri Lanka. Phytopathology 90(4):415–421. doi: 10.1094/Phyto.2000.90.4.415 PubMedGoogle Scholar
  108. Ochiai H, Inoue V, Takeya M, Sasaki A, Kaku H (2005) Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. JARQ 39 (4):275–287Google Scholar
  109. Ogawa T, Lin L, Tabien RE, Khush GS (1987) A new recessive gene for resistance to bacterial blight of rice. Rice Genet Newsl 4:98–100Google Scholar
  110. Ogawa T, Tabien RE, Yamamoto T, Busto GA, Ikeda R (1990) Breeding for near-isogenic lines for resistance to bacterial blight in rice. Rice Genet Newsl 7(10)Google Scholar
  111. Ogawa T, Yamamoto K, Khush G, Mew T (1991) Breeding of near-isogenic lines of rice with single genes for resistance to bacterial blight pathogen (Xanthomonas campestris pv. oryzae). Jpn J Breed 41:523–529Google Scholar
  112. Ogawa T, Yamamoto T (1987) Selection of recurrent parents to develop near-isogenic lines resistant to bacterial leaf blight of rice. Jpn Agri Res 21:65–69Google Scholar
  113. Ou SH (1985) Rice Diseases, 2nd edn. Association Applied Biology, SurreyGoogle Scholar
  114. Pandey A, Sonti RV (2010) Role of the FeoB protein and siderophore in promoting virulence of Xanthomonas oryzae pv. oryzae on rice. J Bacteriol 192(12):3187–3203. doi: 10.1128/JB.01558-09 PubMedCentralPubMedGoogle Scholar
  115. Pandey MP, Singh H, Mani SC (1986) Breakdown of Xa4 gene for resistance to bacterial blight (BB) at Pantnagar, India. Int Rice Res News 11:19–20Google Scholar
  116. Parkinson N, Cowie C, Heeney J, Stead D (2009) Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. Int J Syst Evol Microbiol 59(2):264–274PubMedGoogle Scholar
  117. Patil PB, Sonti RV (2004) Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice. BMC Microbiol 4:40PubMedCentralPubMedGoogle Scholar
  118. Pradhan BB, Ranjan M, Chatterjee S (2012) XadM, a novel adhesin of Xanthomonas oryzae pv. oryzae, exhibits similarity to Rhs family proteins and is required for optimum attachment, biofilm formation, and virulence. Mol Plant Microbe Interact 25(9):1157–1170PubMedGoogle Scholar
  119. Qian G, Liu C, Wu G, Yin F, Zhao Y, Zhou Y, Zhang Y, Song Z, Fan J, Hu B (2012a) AsnB, regulated by diffusible signal factor and global regulator Clp, is involved in aspartate metabolism, resistance to oxidative stress and virulence in Xanthomonas oryzae pv. oryzicola. Mol Plant Pathol 14:145–157PubMedGoogle Scholar
  120. Qian G, Zhang Y, Zhou Y, Liu C, Zhao Y, Song Z, Fan J, Hu B, Liu F (2012b) epv, encoding a hypothetical protein, is regulated by DSF-mediating quorum sensing as well as global regulator Clp and is required for optimal virulence in Xanthomonas oryzae pv. oryzicola. Phytopathology 102:841–847PubMedGoogle Scholar
  121. Qian G, Zhou Y, Zhao Y, Song Z, Wang S, Fan J, Hu B, Venturi V, Liu F (2013) Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J Proteome Res doi: 10.1021/pr4001543
  122. Rai R, Ranjan M, Pradhan BB, Chatterjee S (2012) Atypical regulation of virulence-associated functions by a diffusible signal factor in Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 25:789–801PubMedGoogle Scholar
  123. Rajeshwari R, Jha G, Sonti RV (2005) Role of an in planta-expressed xylanase of Xanthomonas oryzae pv. oryzae in promoting virulence on rice. Mol Plant Microbe Interact 18(8):830–837PubMedGoogle Scholar
  124. Ray SK, Rajeshwari R, Sharma Y, Sonti RV (2002) A high molecular weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Mol Microbiol 46(3):637–647PubMedGoogle Scholar
  125. Ray SK, Rajeshwari R, Sonti RV (2000) Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Mol Plant Microbe Interact 13:394–401PubMedGoogle Scholar
  126. Raymundo AK, Briones AM, Ardales EY, Perez MT, Fernandez LC, Leach JE, Mew TW, Ynalvez MA, McLaren CG, Nelson RJ (1999) Analysis of DNA polymorphism and virulence in Philippine strains of Xanthomonas oryzae pv. oryzicola. Plant Dis 83(5):434–440Google Scholar
  127. Reddy APK, Mackenzie DR, Rouse DI, Rao AV (1979) Relationship of bacterial leaf-blight severity to grain-yield of rice. Phytopathology 69:967–969Google Scholar
  128. Reddy V, Kumar Y, Raghavendra A, Sowjenya G, Kumar S, Ramyasree G, Reddy G (2012) In silico model of DSF synthase RpfF protein from Xanthomonas oryzae pv. oryzae: a novel target for bacterial blight of rice disease. Bioinformation 8:504PubMedCentralPubMedGoogle Scholar
  129. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465PubMedCentralPubMedGoogle Scholar
  130. Robin GP, Ortiz E, Szurek B, Brizard JP, Koebnik R (2013) Comparative proteomics reveal new HrpX-regulated proteins of Xanthomonas oryzae pv. oryzae. J Proteomics doi: 10.1016/j.jprot.2013.04.010
  131. Ryan RP, Vorholter F-J, Potnis N, Jones JB, Van Sluys M-A, Bogdanove AJ, Dow JM (2011) Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 9:344–355PubMedGoogle Scholar
  132. Ryba-White M, Notteghem JL, Leach JE (1995) Comparison of Xanthomonas oryzae pv. oryzae strains from Africa, North America, and Asia by restriction fragment length polymorphism analysis. Int Rice Res News 20:25–26Google Scholar
  133. Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D, Madupu R, Puiu D, Radune D, Shumway M, Trapnell C, Aparna G, Jha G, Pandey A, Patil PB, Ishihara H, Meyer DF, Szurek B, Verdier V, Koebnik R, Dow JM, Ryan RP, Hirata H, Tsuyumu S, Won Lee S, Ronald PC, Sonti RV, Van Sluys MA, Leach JE, White FF, Bogdanove AJ (2008) Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9:204Google Scholar
  134. Savary S, Willocquet L, Elazegui FA, Castilla NP, Teng PS (2000a) Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Dis 84:357–369Google Scholar
  135. Savary S, Willocquet L, Elazegui FA, Teng PS, Du PV, Zhu D, Tang Q, Huang S, Lin Z, Singh HM, Srivastava RK (2000b) Rice pest constraints in tropical Asia: characterization of injury profiles in relation to production situations. Plant Dis 84:156–341Google Scholar
  136. Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K (2009) Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol Lett 296:110–116PubMedGoogle Scholar
  137. Seo YS, Sriariyanun M, Wang L, Pfeiff J, Phetsom J, Lin Y, Jung KH, Chou HH, Bogdanove A, Ronald P (2008) A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes. BMC Microbiol 8:99PubMedCentralPubMedGoogle Scholar
  138. Y-p Shen, L-f Zou, Y-r Li, H-s Zou, X-l Liu, G-y Chen (2012) Xoryp_08180 of Xanthomonas oryzae pv. oryzicola, encoding a hypothetical protein, is regulated by HrpG and HrpX and required for full virulence in rice. J Integr Ag 11:600–610Google Scholar
  139. Siguier P, Filee J, Chandler M (2006) Insertion sequences in prokaryotic genomes. Curr Opin Microbiol 9:526–531PubMedGoogle Scholar
  140. Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV (2013) Cell Wall Degrading Enzyme Induced Rice Innate Immune Responses Are Suppressed by the Type 3 Secretion System Effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. PLoS ONE 8(9):e75867PubMedCentralPubMedGoogle Scholar
  141. Song C, Yang B (2010) Mutagenesis of 18 Type III effectors reveals virulence function of XopZPXO99 in Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 23:893–902PubMedGoogle Scholar
  142. Song W-Y, Wang G-L, Chen L-L, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai W-X, Zhu L-H, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806PubMedGoogle Scholar
  143. Soto-Suarez M, Bernal D, Gonzalez C, Szurek B, Guyot R, Tohme J, Verdier V (2010a) In planta gene expression analysis of Xanthomonas oryzae pathovar oryzae, African strain MAI1. BMC Microbiol 10:170. doi: 10.1186/1471-2180-10-170 PubMedCentralPubMedGoogle Scholar
  144. Soto-Suarez M, Gonzalez C, Piegu B, Tohme J, Verdier V (2010b) Genomic comparison between Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, using suppression-subtractive hybridization. FEMS Microbiol Lett 308(1):16–23. doi: 10.1111/j.1574-6968.2010.01985.x PubMedGoogle Scholar
  145. Sriariyanun M, Seo YS, Phetsom J (2012) Identification of PhoP regulon members in Xanthomonas oryzae pv. oryzae PXO99A. In: 4th international conference on chemical, biological and environmental engineering, IACSIT Press, Singapore. doi: 10.7763/IPCBEE
  146. Subramoni S, Pandey A, Vishnupriya MR, Patel HK, Sonti RV (2012) The ColRS system of Xanthomonas oryzae pv. oryzae is required for virulence and growth in iron-limiting conditions. Mol Plant Pathol 13:690–703. doi: 10.1111/j.1364-3703.2011.00777.x PubMedGoogle Scholar
  147. Subramoni S, Sonti RV (2005) Growth deficiency of a Xanthomonas oryzae pv. oryzae fur mutant in rice leaves is rescued by ascorbic acid supplementation. Mol Plant Microbe Interact 18(7):644–651. doi: 10.1094/MPMI-18-0644 PubMedGoogle Scholar
  148. Sugio A, Yang B, Zhu T, White FF (2007) Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice. Proc Natl Acad Sci 104:10720PubMedCentralPubMedGoogle Scholar
  149. Sukchawalit R, Vattanaviboon P, Utamapongchai S, Vaughn G, Mongkolsuk S (2006) Characterization of Xanthomonas oryzae pv. oryzae recX, a gene that is required for high level expression of recA. FEMS Microbiol Lett 205(1):83–89Google Scholar
  150. Sun Q, Wu W, Qian W, Hu J, Fang R, He C (2006) High quality mutant libraries of Xanthomonas oryzae pv. oryzae and X. campestris pv. campestris generated by an efficient transposon mutagenesis system. FEMS Microbiol Lett 226:145–150Google Scholar
  151. Tabei H (1977) Anatomical studies of rice plant affected with bacterial leaf blight, Xanthomonas oryzae (Uyeda et Ishiyama Dowson). Bull Kyushu Agri Expt Sta 19:193–257Google Scholar
  152. Tang D, Wu W, Li W, Lu H, Worland AJ (2000) Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Theor Appl Genet 101:286–291Google Scholar
  153. Tang JL, Feng JX, Li QQ, Wen HX, Zhou DL, Wilson TJ, Dow JM, Ma QS, Daniels MJ (1996) Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae: involvement in exopolysaccharide production and virulence to rice. Mol Plant Microbe Interact 9:664–666PubMedGoogle Scholar
  154. Triplett LR, Hamilton JP, Buell CR, Tisserat NA, Verdier V, Zink F, Leach JE (2011) Genomic analysis of Xanthomonas oryzae isolates from rice grown in the United States reveals substantial divergence from known X. oryzae pathovars. Appl Environ Microbiol 77(12):3930–3937. doi: 10.1128/AEM.00028-11 PubMedCentralPubMedGoogle Scholar
  155. Vera Cruz C, Bai J, Oña I, Leung H, Nelson R, Mew T, Leach JE (2000) Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc Natl Acad Sci USA 97:13500–13505PubMedCentralPubMedGoogle Scholar
  156. Verdier V, Triplett LR, Hummel AW, Corral R, Cernadas RA, Schmidt CL, Bogdanove AJ, Leach JE (2012a) Transcription activator-like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector-deficient strain of Xanthomonas oryzae. New Phytol 196(4):1197–1207. doi: 10.1111/j.1469-8137.2012.04367.x PubMedGoogle Scholar
  157. Verdier V, Vera Cruz C, Leach JE (2012b) Controlling rice bacterial blight in Africa: needs and prospects. J Biotechnol 159:320–328. doi: 10.1016/j.jbiotec.2011.09.020 PubMedGoogle Scholar
  158. Verdier V, Vera Cruz C, Leach JE (2012c) Controlling rice bacterial blight in Africa: needs and prospects. J Biotechnol 159(4):320–328. doi: 10.1016/j.jbiotec.2011.09.020 PubMedGoogle Scholar
  159. Wang GL, Ruan DL, Song WY, Sideris S, Chen L, Pi LY, Zhang S, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald PC (1998) Xa21D encodes a receptor-like molecular with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell 10:765–780PubMedCentralPubMedGoogle Scholar
  160. Wang L, Makino S, Subedee A, Bogdanove AJ (2007) Novel candidate virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by mutational analysis. Appl Environ Microbiol 73(24):8023–8027PubMedCentralPubMedGoogle Scholar
  161. Wang L, Vinogradov EV, Bogdanove AJ (2013a) Requirement of the lipopolysaccharide O-chain biosynthesis gene wxocB for type III secretion and virulence of Xanthomonas oryzae pv. oryzicola J Bacteriol doi: 10.1128/JB.02299-12
  162. Wang Y, Kim SG, Wu J, Huh HH, Lee SJ, Rakwal R, Agrawal GK, Park ZY, Kang KY, Kim ST (2013b) Secretome analysis of the rice bacterium Xanthomonas oryzae (Xoo) using in vitro and in planta systems. Proteomics:n/a-n/aGoogle Scholar
  163. Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by Golden Gate cloning. PLoS ONE 6:e19722PubMedCentralPubMedGoogle Scholar
  164. White FF, Potnis N, Jones JB, Koebnik R (2009) The type III effectors of Xanthomonas. Mol Plant Pathol 10(6):749–766PubMedGoogle Scholar
  165. White TJ, Gonzalez CR (1995) Electroporation of Xanthomonas. Electroporation Protoc Microorganisms 47:135Google Scholar
  166. Wonni I, Ouedraogo L, Verdier V (2011) First report of bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola on rice in Burkina faso. Plant Dis 95(1):72–73. doi: 10.1094/Pdis-08-10-0566 Google Scholar
  167. Xiang Y, Cao Y, Xu C, Li X, Wang S (2006) Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet 113(7):1347–1355PubMedGoogle Scholar
  168. Xie G, Sun S, Chen J, Zhu X, Chen J, Ye Y, Feng Z, Liang M (1990) Studies on rice seed inspection of Xanthomonas campestris pv. oryzicola: Immunoradiometric assay. Chinese J Rice Sci 4:127–132Google Scholar
  169. Xu J, Wu M, He C (2012) Identification and functional analysis of Tdrxoo, the member of TonB-dependent-receptor family proteins in Xanthomonas oryzae pv. oryzae. Acta Microbiol Sinica 50:155Google Scholar
  170. Yamaguchi K, Nakamura Y, Ishikawa K, Yoshimura Y, Tsuge S, Kawasaki T (2013a) Suppression of rice immunity by Xanthomonas oryzae type III effector Xoo2875. Biosci Biotechnol Biochem 77(4):796–801PubMedGoogle Scholar
  171. Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, Ishihama N, Kishi-Kaboshi M, Takahashi A, Tsuge S, Ochiai H, Tada Y, Shimamoto K, Yoshioka H, Kawasaki T (2013b) A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13(3):347–357. doi: 10.1016/j.chom.2013.02.007 PubMedGoogle Scholar
  172. Yang B, Sugio A, White FF (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA 103:10503–10508. doi: 10.1073/pnas.0604088103 PubMedCentralPubMedGoogle Scholar
  173. Yang B, White FF (2004) Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant Microbe Interact 17:1192–1200. doi: 10.1094/MPMI.2004.17.11.1192 PubMedGoogle Scholar
  174. Yang F, Tian F, Sun L, Chen H, Wu M, Yang C-H, He C (2012) A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact 25:1361–1369PubMedGoogle Scholar
  175. Yang SQ, Liu SY, Zhao S, Yu Y-H, Li RB, Duan CJ, Tang JL, Feng JX (2013) Molecular and pathogenic characterization of new Xanthomonas oryzae pv. oryzae strains from the coastline region of Fangchenggang city in China. World J Microbiol Biotechnol 29:713–720. doi: 10.1007/s11274-012-1227-7 PubMedGoogle Scholar
  176. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95(4):1663–1668PubMedCentralPubMedGoogle Scholar
  177. Yu Y, Streubel J, Balzergue S, Champion A, Boch J, Koebnik R, Feng J, Verdier V, Szurek B (2011) Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Mol Plant Microbe Interact 24(9):1102–1113. doi: 10.1094/MPMI-11-10-0254 PubMedGoogle Scholar
  178. Zang N, Tang DJ, Wei ML, He YQ, Chen B, Feng JX, Xu J, Gan YQ, Jiang BL, Tang JL (2007) Requirement of a mip-like gene for virulence in the phytopathogenic bacterium Xanthomonas campestris pv. campestris. Mol Plant Microbe Interact 20(1):21–30. doi: 10.1094/MPMI-20-0021 PubMedGoogle Scholar
  179. Zhang H, Wang S (2013) Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. Curr Opin Plant Biol doi: 10.1016/j.pbi.2013.02.008
  180. Zhang X, Gao S, Wu M, He C (2009) DNA microarray expression analysis of Xanthomonas oryzae pv. oryzae in rice leaves at early infection stages using selective bacterial transcript labeling with genome-directed primers. Scientia Agricultura Sinica 10:3501–3508Google Scholar
  181. Zhao B, Ardales E, Raymundo A, Bai J, Trick HN, Leach JE, Hulbert S (2004a) The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1. Mol Plant Microbe Interact 17:771–779PubMedGoogle Scholar
  182. Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci USA 102(43):15383–15388PubMedCentralPubMedGoogle Scholar
  183. Zhao BY, Ardales E, Brasset E, Claflin LE, Leach JE, Hulbert SH (2004b) The Rxo1/ Rba1 locus of maize controls resistance reactions to pathogenic and non-host bacteria. Theor Appl Genet 109(1):71–79PubMedGoogle Scholar
  184. Zhao S, Mo WL, Wu F, Tang W, Tang JL, Szurek B, Verdier V, Koebnik R, Feng JX (2013) Identification of non-TAL effectors in Xanthomonas oryzae pv. oryzae Chinese strain 13,751 and analysis of their role in the bacterial virulence. World J Microbiol Biotechnol 29:733–744. doi: 10.1007/s11274-012-1229-5 PubMedGoogle Scholar
  185. Zhao S, Poulin L, Rodriguez RL, Serna NF, Liu SY, Wonni I, Szurek B, Verdier V, Leach JE, He YQ, Feng JX, Koebnik R (2012a) Development of a variable number of tandem repeats typing scheme for the bacterial rice pathogen Xanthomonas oryzae pv. oryzicola. Phytopathology 102:948–956. doi: 10.1094/PHYTO-04-12-0078-R PubMedGoogle Scholar
  186. Zhao Y, Qian G, Fan J, Yin F, Zhou Y, Liu C, Shen Q, Hu B, Liu F (2012b) Identification and characterization of a novel gene, hshB, in Xanthomonas oryzae pv. oryzicola co-regulated by quorum sensing and clp. Phytopathology 102:252–259PubMedGoogle Scholar
  187. Zhao Y, Qian G, Yin F, Fan J, Zhai Z, Liu C, Hu B, Liu F (2011) Proteomic analysis of the regulatory function of DSF-dependent quorum sensing in Xanthomonas oryzae pv. oryzicola. Microb Pathogenesis 50:48–55Google Scholar
  188. Zheng JS, Li YZ, Fang XJ (2005) Detection of QTL conferring resistance to bacterial leaf streak in rice chromosome 2 (O. sativa L. ssp. indica). Agri Sci China 38:1923–1925Google Scholar
  189. Zhu PL, Zhao S, Tang JL, Feng JX (2011) The rsmA-like gene rsmAXoo of Xanthomonas oryzae pv. oryzae regulates bacterial virulence and production of diffusible signal factor. Mol Plant Pathol 12(3):227–237PubMedGoogle Scholar
  190. Zhu W, MaGbanua MM, White FF (2000) Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J Bacteriol 182:1844–1853PubMedCentralPubMedGoogle Scholar
  191. Zou HS, Song X, Zou LF, Yuan L, Li YR, Guo W, Che YZ, Zhao WX, Duan YP, Chen GY (2012) EcpA, an extracellular protease, is a specific virulence factor required by Xanthomonas oryzae pv. oryzicola but not by X. oryzae pv. oryzae in rice. Microbiology 158:2372–2383PubMedGoogle Scholar
  192. Zou L, Li YR, Chen GY (2011) A non-marker mutagenesis strategy to generate poly-hrp gene mutants in the rice pathogen Xanthomonas oryzae pv. oryzicola. J Integr Ag 10:1139–1150Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lindsay Triplett
    • 1
  • Ralf Koebnik
    • 2
  • Valerie Verdier
    • 1
    • 2
  • Jan E. Leach
    • 1
    Email author
  1. 1.Department of Bioagricultural Sciences and Pest Management and Program in Plant Molecular BiologyColorado State UniversityFort CollinsUSA
  2. 2.Institut de Recherche pour le Développement, UMR Résistance des Plantes aux Bioagresseurs, IRD-CIRAD-UM2Montpellier Cedex 5France

Personalised recommendations