Advertisement

Structure and Cohomology of 3-Lie Algebras Induced by Lie Algebras

  • Joakim Arnlind
  • Abdennour Kitouni
  • Abdenacer Makhlouf
  • Sergei Silvestrov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 85)

Abstract

The aim of this paper is to compare the structure and the cohomology spaces of Lie algebras and induced \(3\)-Lie algebras.

References

  1. 1.
    Arnlind J., Makhlouf A., Silvestrov S.: Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras. J. Math. Phys. 51, 043515, 11 (2010)Google Scholar
  2. 2.
    Arnlind J., Makhlouf A., Silvestrov S.: Construction of \(n\)-Lie algebras and \(n\)-ary Hom-Nambu-Lie algebras, J. Math. Phys. 52, 123502, 13 (2011)Google Scholar
  3. 3.
    Awata H., Li M., Minic D., Yoneya T.: On the quantization of Nambu brackets, J. High Energy Phys. 2, Paper 13, 17 (2001)Google Scholar
  4. 4.
    Bai, R., Song, G., Zhang, Y.: On classification of \(n\)-Lie algebras. Front. Math. China 6, 581–606 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Daletskii, Y.L., Takhtajan, L.A.: Leibniz and Lie algebra structures for Nambu algebra. Lett. Math. Phys. 39, 127–141 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    de Azcárraga, J.A., Izquierdo, J.M.: n-ary algebras: a review with applications. J. Phys. A43, 293001-1–117 (2010)Google Scholar
  7. 7.
    de Graaf, W.A.: Classification of solvable Lie algebras. Experiment. Math. 14, 15–25 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Filippov, V.T.: \(n\)-Lie algebras. Siberian Math. J. 26, 879–891 (1985)CrossRefMATHGoogle Scholar
  9. 9.
    Gautheron, Ph: Some remarks concerning Nambu mechanics. Lett. Math. Phys. 37(1), 103–116 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kasymov, Sh. M.: Theory of \(n\)-Lie algebras. Algebra Logic 26, 155–166 (1987)Google Scholar
  11. 11.
    Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 3(7), 2405–2412 (1973)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Patera, J., Sharp, R.T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17, 986–994 (1976)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Takhtajan, L.A.: Higher order analog of Chevalley-Eilenberg complex and deformation theory of \(n\)-gebras. St. Petersburg Math. J. 6(2), 429–438 (1995)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joakim Arnlind
    • 1
  • Abdennour Kitouni
    • 2
  • Abdenacer Makhlouf
    • 2
  • Sergei Silvestrov
    • 3
  1. 1.Department of MathematicsLinköping UniversityLinköpingSweden
  2. 2.Université de Haute-AlsaceMulhouseFrance
  3. 3.Mälardalens HögskolaVästeråsSweden

Personalised recommendations