Skip to main content

Rigid Current Lie Algebras

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 85))

Abstract

A current Lie algebra is constructed from a tensor product of a Lie algebra and a commutative associative algebra of dimension greater than 2. In this work we are interested in deformations of finite dimensional current Lie algebras and in the problem of rigidity. In particular we prove that a complex finite dimensional current Lie algebra with trivial center is rigid if it is isomorphic to a direct product \(\mathfrak {g}\times \mathfrak {g}\times \cdots \times \mathfrak {g}\) where \(\mathfrak {g}\) is a rigid Lie algebra.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ancochea Bermudez J.M.: On the rigidity of solvable Lie algebras. Deformation theory of algebras and structures and applications (Il Ciocco, 1986). NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 247, pp. 403–445. Kluwer Academic Publisher, Dordrecht (1988)

    Google Scholar 

  2. Ancochea Bermudez J.M., Campoamor Stursberg R., Garcia Vergnolle L., Goze M.: Algèbres de Lie réelles résolubles algébriquement rigides. Monatsh. Math. 152(3), 187–195 (2007)

    Google Scholar 

  3. Boers, A.H.: Duplication of algebras. Indag. Math. 44(2), 121–125 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Doubek, M., Markl, M., Zima, P.: Deformation theory (lecture notes). Arch. Math. (Brno) 43(5), 333–371 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Carles, R.: Sur la structure des algèbres de Lie rigides. Ann. Inst. Fourier 34(3), 65–82 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fialowski, A., Schlichenmaier, M.: Global deformations of the Witt algebra of Krichever-Novikov type. Commun. Contemp. Math. 5(6), 921–945 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goze, M.: Algèbres de Lie: classifications, déformations et rigidité, géométrie différentielle. In: Barbot, T., Belbachir, H., Mehdi, S. (eds.) Algèbre, dynamique et analyse pour la géométrie: aspects récents, pp. 39–98. Ellipse, Paris (2010)

    Google Scholar 

  8. Goze, M.: Perturbations of Lie algebra structures. Deformation theory of algebras and structures and applications (Il Ciocco, 1986). NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 247, pp. 265–355. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  9. Goze, M., Ancochea Bermudez, J.M.: On the classification of rigid Lie algebras. J. Algebra 245(1), 68–91 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goze, M., Khakimdjanov, Y.: Nilpotent and solvable Lie algebras. Handbook of algebra, vol. 2, pp. 615–663, North-Holland, Amsterdam (2000)

    Google Scholar 

  11. Goze, M., Makhlouf, A.: On the rigid complex associative algebras. Commun. Algebra 18(12), 4031–4046 (1990)

    Google Scholar 

  12. Goze, M., Remm, E.: Valued deformations of algebras. J. Algebra Appl. 3(4), 345–365 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harrison, D.K.: Commutative algebras and cohomology. Trans. Am. Math. Soc. 104, 191–204 (1962)

    Article  MATH  Google Scholar 

  14. Hochschild, G.: On the cohomology theory for associative algebras. Ann. Math. 47(2), 568–579 (1946)

    Google Scholar 

  15. Neeb, K.H., Wagemanm F.: The second cohomology of current algebras of general Lie algebras. Canad. J. Math. 60(4), 892–922

    Google Scholar 

  16. Remm, E., Goze, M.: On algebras obtained by tensor product. J. Algebra 327, 13–30 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schaps, M.: Deformations of algebras and Hochschild cohomology. Perspectives in ring theory (Antwerp, 1987). NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 233, pp. 41–58. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  18. Zusmanovich, P.: Low-dimensional cohomology of current Lie algebras and analogs of the Riemann tensor for loop manifold. Linear Algebra Appl. 407, 71–104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Remm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Remm, E., Goze, M. (2014). Rigid Current Lie Algebras. In: Makhlouf, A., Paal, E., Silvestrov, S., Stolin, A. (eds) Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics & Statistics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55361-5_14

Download citation

Publish with us

Policies and ethics