Advertisement

Developing a Knowledge Management System Using an Ontological Approach in Global Organization

  • Seung-Hwa Chung
  • Simon Robertson
  • Andre Minnaar
  • Mark Cook
  • Lily Sun
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 426)

Abstract

This paper introduces an ontology-based knowledge model for knowledge management. This model can facilitate knowledge discovery that provides users with insight for decision making. The users requiring the insight normally play different roles with different requirements in an organization. To meet the requirements, insights are created by purposely aggregated transactional data. This involves a semantic data integration process. In this paper, we present a knowledge management system which is capable of representing knowledge requirements in a domain context and enabling the semantic data integration through ontology modeling. The knowledge domain context of United Bible Societies is used to illustrate the features of the knowledge management capabilities.

Keywords

Knowledge management system Knowledge model Ontology Global organization 

References

  1. 1.
    Havens, C.T.: Knowledge management system and method, U.S. Patent and Trademark Office, U.S. Patent No. 5,924,072, Washington, DC (July 13, 1999)Google Scholar
  2. 2.
    Rho, S., Park, J.: Ontology: The key of Internet Evolution, from Web 2.0 to Web 3.0, Gods’Toy Business, Korea, ch. 1 (2007) ISBN13-9788995919118Google Scholar
  3. 3.
    Davenport, T.H.: Saving IT’s Soul: Human-Centered Information Management. Harvard Business Review 72(2), 119–131 (1994)Google Scholar
  4. 4.
    Madhavan, J., Jeffery, S., Cohen, S., Dong, X., Ko, D., Yu, C., Halevy, A.: Web-scale Data Integration: You can only afford to pay as you go. In: Proceedings of CIDR, pp. 342–350 (2007)Google Scholar
  5. 5.
    Chai, X., Sayyadian, M., Doan, A., Rosenthal, A., Seligman, L.: Analyzing and Revising Data Integration Schemas to improve their matchability. Proceedings of the VLDB Endowment 1(1), 773–784 (2008)Google Scholar
  6. 6.
    Bernstein, P.A., Haas, L.M.: Information Integration in the Enterprise. Communications of the ACM 51(9) (2008)Google Scholar
  7. 7.
    Waters, J., Powers, B.J., Ceruti, M.G.: Global Interoperability Using Semantics, Standards, Science and Technology (GIS3T). J. Computer Stands and Interfaces 31(6), 1158–1166 (2009)CrossRefGoogle Scholar
  8. 8.
    Antoniou, G., Harmelen, F.V.: Web Ontology Language: OWL. In: Handbook on Ontologies, pp. 67–92. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Noy, N.F.: Semantic Integration: a survey of ontology-based approaches. ACM Sigmod Record 33(4), 65–70 (2004)CrossRefGoogle Scholar
  10. 10.
    Gardner, S.P.: Ontologies and Semantic Data Integration. Drug Discovery Today 10(14), 1001–1007 (2005)CrossRefGoogle Scholar
  11. 11.
    Schema RDFS Organization, Linked Data Community: Supporting Schema.org deployment and usage with a special focus on Linked Data (2011), http://schema.rdfs.org/
  12. 12.
    Castle, D., et al.: Knowledge Management and the Contextualisation of Intellectual Property Rights in Innovation Systems. Journal of Law, Technology and Society 7(1), 32–50 (2010)Google Scholar
  13. 13.
    The United Bible Societies, Swindon, UK (2014), http://www.unitedbiblesocieties.org/
  14. 14.
    Shettar, R., Bhuptani, R.: A Vertical Search Engine–Based On Domain Classifier. International Journal of Computer Science and Security 2(4), 18–27 (2007)Google Scholar
  15. 15.
    The World Factbook by Central Intelligence Agency, Washington DC, US (2013), https://www.cia.gov/library/publications/the-world-factbook/index.html
  16. 16.
    Human Development Reports by United Nations Development Programme (2012), http://hdr.undp.org/en/data
  17. 17.
    World Wide Web Consortium (W3C), OWL Web Ontology Language Use Cases and Requirements, W3C Recommendation (2004), http://www.w3.org/TR/webont-req/
  18. 18.
    Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology Visualization Methods - A Survey. ACM Computing Surveys (CSUR) 39(4), 10 (2007)CrossRefGoogle Scholar
  19. 19.
    World Wide Web Consortium (W3C), SPARQL Query Language for RDF, W3C Recommendation (2008), http://www.w3.org/TR/rdf-sparql-query/
  20. 20.
    World Wide Web Consortium (W3C), SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C Recommendation (2004), http://www.w3.org/Submission/SWRL/

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Seung-Hwa Chung
    • 1
  • Simon Robertson
    • 1
  • Andre Minnaar
    • 1
  • Mark Cook
    • 1
  • Lily Sun
    • 2
  1. 1.United Bible SocietiesUK
  2. 2.University of ReadingUK

Personalised recommendations