ForestMaps: A Computational Model and Visualization for Forest Utilization

  • Hannah Bast
  • Jonas Sternisko
  • Sabine Storandt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8470)

Abstract

We seek to compute utilization information for public spaces, in particular forests: which parts are used by how many people. Our contribution is threefold. First, we present a sound model for computing this information from publicly available data such as road maps and population counts. Second, we present efficient algorithms for computing the desired utilization information according to this model. Third, we provide an experimental evaluation with respect to both efficiency and quality, as well as an interactive web application, that visualizes our result as a heat-map layer on top of OpenStreetMap data. The link to our web application can be found under http://forestmaps.informatik.uni-freiburg.de.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ural, S., Hussain, E., Shan, J.: Building population mapping with aerial imagery and GIS data. International Journal of Applied Earth Observation and Geoinformation 13(6), 841–852 (2011)CrossRefGoogle Scholar
  2. 2.
    Gemsa, A., Pajor, T., Wagner, D., Zündorf, T.: Efficient Computation of Jogging Routes. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 272–283. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Maervoet, J., Brackman, P., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: Tour suggestion for outdoor activities. In: Liang, S.H.L., Wang, X., Claramunt, C. (eds.) W2GIS 2013. LNCS, vol. 7820, pp. 54–63. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Luxen, D., Schieferdecker, D.: Candidate sets for alternative routes in road networks. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 260–270. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Yen, J.Y.: Finding the k shortest loopless paths in a network. Management Science 17(11), 712–716 (1971)CrossRefMATHGoogle Scholar
  6. 6.
    Eppstein, D.: Finding the k shortest paths. SIAM Journal on Computing 28(2), 652–673 (1998)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Ensinger, K., Wurster, M., Selter, A., Jenne, M., Bethmann, S., Botsch, K.: “Eintauchen in eine andere Welt” - Untersuchungen über Erholungskonzepte und Erholungsprozesse im Wald. German Journal of Forest Research 184(3), 70–83 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hannah Bast
    • 1
  • Jonas Sternisko
    • 1
  • Sabine Storandt
    • 1
  1. 1.Department of Computer ScienceUniversity of FreiburgGermany

Personalised recommendations