Advertisement

On Special L-Values Attached to Siegel Modular Forms

  • Thanasis Bouganis
Conference paper
Part of the Contributions in Mathematical and Computational Sciences book series (CMCS, volume 7)

Abstract

In his admirable book “Arithmeticity in the Theory of Automorphic Forms” Shimura establishes various algebraicity results concerning special values of Siegel modular forms. These results are all stated over an algebraic closure of \(\mathbb{Q}\). In this article we work out the field of definition of these special values. In this way we extend some previous results obtained by Sturm, Harris, Panchishkin, and Böcherer-Schmidt.

References

  1. Böcherer, S.: Über die Fourier-jacobi-Entwicklung der Siegelschen Eisensteinreihen. Math. Z. 183, 21–43 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Böcherer, S.: Über die Fourier-jacobi-Entwicklung der Siegelschen Eisensteinreihen II. Math. Z. 189, 81–100 (1985a)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Böcherer, S.: Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe. J. R. Ang. Math. 362, 146–168 (1985b)Google Scholar
  4. Böcherer, S., Schmidt, C.-G.: p-adic measures attached to Siegel modular forms. Annales de l’ institut Fourier 50(5), 1375–1443 (2000)Google Scholar
  5. Bouganis, Th.: On special L-values attached to metaplectic modular forms (in preparation, a)Google Scholar
  6. Bouganis, Th.: p-adic measures for hermitian modular forms and the Rankin-Selberg method (in preparation, b)Google Scholar
  7. Courtieu, M., Panchishkin, A.A.: Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms. Lecture Notes in Mathematics, vol. 1471, 2nd augmented ed. Springer, Berlin/New York (2004)Google Scholar
  8. Feit, P.: Poles and Residues of Eisenstein Series for Symplectic and Unitary Groups. Volume 346 of Memoirs of the American Mathematical Society, vol. 61. American Mathematical Society, Providence (1986)Google Scholar
  9. Garrett, P.B.: Pullbacks of Eisenstein series; applications. In: Satake, I., Morita, Y. (eds.) Automorphic Forms in Several Variables, pp. 114–137. Birkhäuser, Boston (1984)Google Scholar
  10. Garrett, P.B.: On the arithmetic of Siegel-Hilbert cuspforms: Petersson inner products and Fourier coefficients. Invent. Math. 107, 453–481 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Harris, M.: Special values of zeta functions attached to Siegel modular forms. Ann. Sci. Éc Norm. Super. 14, 77–120 (1981)MathSciNetzbMATHGoogle Scholar
  12. Harris, M.: Eisenstein Series on Shimura varieties. Ann. Math. 119, 59–94 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Harris, M.: L functions and periods of polarized regular motives. Journal für die reine und angewandte Mathematik 483, 75–161 (1997)MathSciNetzbMATHGoogle Scholar
  14. Harris, M., Li, J.-S., Skinner, C.: The Rallis inner product formula and p-adic L-functions. In: J. Cogdell et al. (eds) Automorphic Representations, L-Functions and Applications: Progress and Prospects. Volume in Honor of S. Rallis, pp. 225–255. de Gruyter, Berlin (2005)Google Scholar
  15. Harris, M., Li, J.-S., Skinner, C.: p-Adic L-Functions for Unitary Shimura Varieties, I: Construction of the Eisenstein Measure. Documenta Mathematica, Extra Volume: John H.Coates’ Sixtieth Birthday, pp. 393–464 (2006)Google Scholar
  16. Ichikawa, T.: Vector-valued p-adic Siegel modular forms. J. reine angew. Math. doi:10.1515/crelle-2012-0066Google Scholar
  17. Panchishkin, A.A.: Non-Archimedean L-Functions of Siegel and Hilbert Modular Forms. Lecture Notes in Mathematics, vol. 1471, 166p. Springer, Berlin/New York (1991)Google Scholar
  18. Piatetski-Shapiro, I., Rallis, S.: Explicit Constructions of Automorphic L-Functions. Lecture Notes in Mathematics, vol. 1254, pp 1–52 1987MathSciNetCrossRefzbMATHGoogle Scholar
  19. Shimura, G.: Confluent hypergeometric functions on tube domains. Math. Ann. 260, 269–302 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Shimura, G.: Euler products and Fourier coefficients of automorphic forms on symplectic groups. Invent. Math. 116, 531–576 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Shimura, G.: Eisenstein series and zeta functions on symplectic groups. Invent. Math. 119, 539–584 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Shimura, G.: Euler Products and Eisenstein Series. CBMS Regional Conference Series in Mathematics, No. 93. American Mathematical Society, Providence (1997)Google Scholar
  23. Shimura, G.: Arithmeticity in the Theory of Automorphic Forms. Mathematical Surveys and Monographs, vol. 82. American Mathematical Society, Providence (2000)Google Scholar
  24. Skinner, C., Urban, E.: The Iwasawa main conjectures for GL 2. Invent. Math. (2014). doi:10.1007/s00222-013-0448-1MathSciNetzbMATHGoogle Scholar
  25. Sturm, J.: Special values of zeta functions, and Eisenstein series of half integral weight. Am. J. Math. 102(2), 219–240 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Sturm, J.: The critical values of zeta functions associated to the symplectic group. Duke Math. J. 48(2), 219–240 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesDurham UniversityDurhamUK

Personalised recommendations