Advertisement

X-Ray Laser Imaging of Biomolecules Using Multiple GPUs

  • Stefan Engblom
  • Jing LiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8384)

Abstract

Extremely bright X-ray lasers are becoming a promising tool for 3D imaging of biomolecules. By hitting a beam of streaming particles with a very short burst of a high energy X-ray and collecting the resulting scattering pattern, the 3D structure of the particles can be deduced. The computational complexity associated with transforming the data thus collected into a 3D intensity map is very high and calls for efficient data-parallel implementations.

We present ongoing work in accelerating this application using multiple GPU nodes. In particular, we look at the scaling properties of the application and give predictions as to the computational viability of this imaging technique.

Keywords

GPU cluster CUDA/MPI Single molecule imaging X-ray laser 

Notes

Acknowledgment

This work was financially supported by the Swedish Research Council, the Röntgen Ångström Cluster, the Knut och Alice Wallenbergs Stiftelse, the European Research Council (JL), and by the Swedish Research Council within the UPMARC Linnaeus center of Excellence (SE, JL).

References

  1. 1.
    Chapman, H.N., et al.: Femtosecond X-ray protein nanocrystallography. Nature 470(7332), 73–77 (2011). doi: 10.1038/nature09750 CrossRefGoogle Scholar
  2. 2.
    Gaffney, K.J., Chapman, H.N.: Imaging atomic structure and dynamics with ultrafast X-ray scattering. Science 316(5830), 1444–1448 (2007). doi: 10.1126/science.1135923 CrossRefGoogle Scholar
  3. 3.
    Jacobsen, D.A., Thibault, J.C., Senocak, I.: An MPI-CUDA implementation for massively parallel incompressible flow computations on multi-GPU clusters. In: 48th AIAA Aerospace Sciences Meeting and Exhibit, vol. 16 (2010). doi:10.2514/6.2010-522Google Scholar
  4. 4.
    Loh, N.D., Elser, V.: Reconstruction algorithm for single-particle diffraction imaging experiments. Phys. Rev. E 80(2), 026705 (2009). doi: 10.1103/PhysRevE.80.026705 CrossRefGoogle Scholar
  5. 5.
    Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 355–368. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  6. 6.
    Neutze, R., Wouts, R., van der Spoel, D., Hajdu, J.: Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406(6797), 752–757 (2000). doi: 10.1038/35021099 CrossRefGoogle Scholar
  7. 7.
    Pennycook, S.J., Hammond, S.D., Jarvis, S.A., Mudalige, G.R.: Performance analysis of a hybrid MPI/CUDA implementation of the NASLU benchmark. ACM SIGMETRICS Perf. Eval. Rev. 38(4), 23–29 (2011). doi: 10.1145/1964218.1964223 CrossRefGoogle Scholar
  8. 8.
    Salvadore, F., Bernardini, M., Botti, M.: GPU accelerated flow solver for direct numerical simulation of turbulent flows. J. Comput. Phys. 235, 129–142 (2013). doi: 10.1016/j.jcp.2012.10.012 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Seibert, M.M., et al.: Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470(7332), 78–81 (2011). doi: 10.1038/nature09748 CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Dou, Y., Guo, S., Lei, Y., Zou, D.: CPU-GPU hybrid parallel strategy for cosmological simulations. Concurr. Comput.: Pract. Exper. (2013). doi:10.1002/cpe.3046Google Scholar
  11. 11.
    Young, L., et al.: Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466(7302), 56–61 (2010). doi: 10.1038/nature09177 CrossRefGoogle Scholar
  12. 12.
    Zaspel, P., Griebel, M.: Solving incompressible two-phase flows on multi-GPU clusters. Comput. Fluids 80, 356–364 (2013). doi: 10.1016/j.compfluid.2012.01.021 CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Division of Scientific Computing, Department of Information TechnologyUppsala UniversityUppsalaSweden
  2. 2.Laboratory of Molecular Biophysics, Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden

Personalised recommendations