Parallel Processing Model for Syntactic Pattern Recognition-Based Electrical Load Forecast

  • Mariusz FlasińskiEmail author
  • Janusz Jurek
  • Tomasz Peszek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8384)


A model of a recognition of distorted/fuzzy patterns for a electrical load forecast is presented in the paper. The model is based on a syntactic pattern recognition approach. Since a system implemented on the basis of the model is to perform in a real-time mode, it is parallelized. An architecture for parallel processing and a method of tasks distribution is proposed. First experimental results are also provided and discussed.


Syntactic pattern recognition Distorted/fuzzy patterns Grammar GDPLL(\(k\)Parallel parser Electrical load forecast 


  1. 1.
    Alfares, H.K., Nazeeruddin, M.: Electric load forecasting: literature survey and classifcation of methods. Int. J. Syst. Sci. 33, 23–34 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bunke, H.O., Sanfeliu, A. (eds.): Syntactic and Structural Pattern Recognition Theory and Applications. World Scientific, Singapore (1990)zbMATHGoogle Scholar
  3. 3.
    Chiang Y., Fu K.S.: Parallel parsing algorithms and VLSI implementation for syntactic pattern recognition. IEEE Trans. Pattern Anal. Machine Intell. PAMI-6, 302–313 (1984)Google Scholar
  4. 4.
    Emary, I.M., Ramakrishnan, S.: On the application of various probabilistic neural networks in solving different pattern classification problems. World Appl. Sci. J. 4, 772–780 (2008)Google Scholar
  5. 5.
    Flasiński, M., Jurek, J.: Dynamically programmed automata for quasi context sensitive languages as a tool for inference support in pattern recognition-based real-time control expert systems. Pattern Recogn. 32, 671–690 (1999)CrossRefGoogle Scholar
  6. 6.
    Flasiński, M., Jurek, J.: On the analysis of fuzzy string patterns with the help of extended and stochastic GDPLL(k) grammars. Fundamenta Informaticae 71, 1–14 (2006). IOS Press, AmsterdamzbMATHMathSciNetGoogle Scholar
  7. 7.
    Flasiński, M., Jurek, J., Myśliński, S.: Multi-agent system for recognition of hand postures. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009, Part II. LNCS, vol. 5545, pp. 815–824. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Flasiński, M., Jurek, J.: Syntactic pattern recognition: survey of frontiers and crucial methodological issues. Adv. Intell. Soft Comput. 95, 187–196 (2011). Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Flasiński M., Jurek J., Fundamental methodological issues of syntactic pattern recognition. Pattern Anal. Appl. (2013) (in print). SpringerGoogle Scholar
  10. 10.
    Fu, K.S.: Syntactic Pattern Recognition and Applications. Prentice Hall, Englewood Cliffs (1982)zbMATHGoogle Scholar
  11. 11.
    Goodman, R.M., Higgins, C.M., Miller, J.W.: Rule-based neural networks for classification and probability estimation. Neural Comput. 4, 781–804 (1992)CrossRefGoogle Scholar
  12. 12.
    Guerra, C.: 2d object recognition on a reconfigurable mesh. Pattern Recogn. 31, 83–88 (1998)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Jurek, J.: Syntactic pattern recognition-based agents for real-time expert systems. In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2001. LNCS (LNAI), vol. 2296, pp. 161–168. Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Jurek, J.: Towards grammatical inferencing of GDPLL(k) grammars for applications in syntactic pattern recognition-based expert systems. In: Rutkowski, L., Siekmann, J., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 604–609. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Jurek, J.: Recent developments of the syntactic pattern recognition model based on quasi-context sensitive languages. Pattern Recogn. Lett. 26, 1011–1018 (2005). Elsevier, AmsterdamCrossRefGoogle Scholar
  16. 16.
    Jurek, J.: Generalisation of a language sample for grammatical inference of GDPLL(k) grammars. Adv. Soft Comput. 45, 282–288 (2007). Springer, BerlinCrossRefGoogle Scholar
  17. 17.
    Jurek, J.: Grammatical inference as a tool for constructing self-learning syntactic pattern recognition-based agents. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 712–721. Springer, Heidelberg (2008)Google Scholar
  18. 18.
    Jurek, J., Peszek, T.: On the use of syntactic pattern recognition methods, neural networks, and fuzzy systems for short-term electrical load forecasting. Adv. Soft Comput. 30, 851–858 (2005). Springer, BerlinCrossRefGoogle Scholar
  19. 19.
    Jurek, J., Peszek, T.: Model of syntactic recognition of distorted string patterns with the help of GDPLL(k)-based automata. Adv. Intell. Soft Comput. 226, 101–110 (2013)Google Scholar
  20. 20.
    Lee S.S., Tanaka H.T.: Parallel image segmentation with adaptive mesh. In: Proceedings of the 15th International Conference Pattern Recognition, Barcelona, Spain, vol. 1, pp. 635–639 (2000)Google Scholar
  21. 21.
    Miguet, S., Montanvert, A., Wang, P.S.P.: Parallel Image Analysis. World Scientific, Singapore (1998)zbMATHGoogle Scholar
  22. 22.
    Ogiela, M.R., Ogiela, U.: Dna-like linguistic secret sharing for strategic information systems. Int. J. Inf. Manag. 32, 175–181 (2012)CrossRefGoogle Scholar
  23. 23.
    Pavlidis, T.: Structural Pattern Recognition. Springer, New York (1977)zbMATHGoogle Scholar
  24. 24.
    Peszek, T.: Neuro–fuzzy prediction systems in energetics. Schedae Informaticae 15, 73–94 (2006)Google Scholar
  25. 25.
    Ranganathan, N.: VLSI and Parallel Computing for Pattern Recognition and Artificial Intelligence. World Scientific, Singapore (1995)zbMATHGoogle Scholar
  26. 26.
    Specht, D.F.: Probabilistic neural networks. Neural Netw. 3, 109–118 (1990)CrossRefGoogle Scholar
  27. 27.
    Tadeusiewicz, R.: Sieci neuronowe. Akademicka Oficyna Wydawnicza, Warszawa (1993)Google Scholar
  28. 28.
    Tadeusiewicz, R., Flasiński, M.: Rozpoznawanie Obrazów. Państwowe Wydawnictwo Naukowe PWN, Warszawa (1991)Google Scholar
  29. 29.
    Tadeusiewicz, R., Ogiela, M.R.: Medical Image Understanding Technology. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  30. 30.
    Taylor, J., McSharry, P.: Short-term load forecasting methods: an evaluation based on European data. IEEE Trans. Power Syst. 22, 2213–2219 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mariusz Flasiński
    • 1
    Email author
  • Janusz Jurek
    • 1
  • Tomasz Peszek
    • 1
  1. 1.Information Technology Systems DepartmentJagiellonian UniversityCracowPoland

Personalised recommendations