Performance of Dense Eigensolvers on BlueGene/Q

  • Inge GutheilEmail author
  • Jan Felix Münchhalfen
  • Johannes Grotendorst
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8384)


Many scientific applications require the computation of about 10–30 % of the eigenvalues and eigenvectors of large dense symmetric or complex hermitian matrices. In this paper we will present performance evaluation results of the eigensolvers of the three libraries Elemental, ELPA, and ScaLAPACK on the BlueGene/Q architecture. All libraries include solvers for the computation of only a part of the spectrum. The most time-consuming part of the eigensolver is the reduction of the full eigenproblem to a tridiagonal one. Whereas Elemental and ScaLAPACK only offer routines to directly reduce the full matrix to a tridiagonal one, which only allows the use of BLAS 2 matrix-vector operations and needs a lot of communication, ELPA also offers a two-step reduction routine, first transforming the full matrix to banded form and thereafter to tridiagonal form. This two-step reduction shortens the reduction time significantly but at the cost of a higher complexity of the back transformation step. We will show up to which part of the eigenspectrum the use of the two-step reduction pays off.


Eigenvalue and eigenvector computation Elemental ELPA ScaLAPACK BlueGene/Q 



The authors thank Jack Poulson, the author of the Elemental library and the ELPA team, especially Thomas Auckenthaler, for their immediate responses to problem reports.


  1. 1.
    FLEUR: The Jülich FLAPW code family. Website (May 2013).
  2. 2.
    Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley, K., Walker, D., Whaley, R.: Scalapack: a portable linear algebra library for distributed memory computers-design issues and performance. Comput. Phys. Commun. 97(1–2), 1–15 (1996)CrossRefzbMATHGoogle Scholar
  3. 3.
    Poulson, J., Marker, B., van de Geijn, R.A., Hammond, J.R., Romero, N.A.: Elemental: a new framework for distributed memory dense matrix computations. ACM Trans. Math. Softw. 39(2), 13:1–13:24 (2013)CrossRefGoogle Scholar
  4. 4.
    ELPA: Eigenvalue Solvers for Petaflop Applications home page. Website (May 2013).
  5. 5.
    FZJ-JSC: IBM Blue Gene/Q - JUQUEEN home page. Website (May 2013).
  6. 6.
    Gutheil, I.: Performance evaluation of scalapack eigensolver routines on two hpc systems. In: 6th International Workshop on Parallel Matrix Algorithms and Applications (PMAA’10) (2010).
  7. 7.
    Dhillon, I., Parlett, B., Vömel, C.: The design and implementation of the MRRR algorithm. ACM Trans. Math. Softw. (TOMS) 32(4), 533–560 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dhillon, I.: A new O(\(n^2\)) algorithm for the symmetric tridiagonal eigenvalue eigenvector problem. Ph.D. thesis, University of California, Berkeley (1997)Google Scholar
  9. 9.
    Auckenthaler, T., Blum, V., Bungartz, H.J., Huckle, T., Johanni, R., Krämer, L., Lang, B., Lederer, H., Willems, P.: Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations. Parallel Comput. 37(12), 783–794 (2011)CrossRefGoogle Scholar
  10. 10.
    Auckenthaler, T., Bungartz, H.J., Huckle, T., Krämer, L., Lang, B., Willems, P.: Developing algorithms and software for the parallel solution of the symmetric eigenvalue problem. J. Comput. Sci. 2(3), 272–278 (2011)CrossRefGoogle Scholar
  11. 11.
    Gutheil, I., Berg, T., Grotendorst, J.: Performance analysis of parallel eigensolvers of two libraries on BlueGene/p. J. Math. Syst. Sci. 2(4), 231–236 (2012)Google Scholar
  12. 12.
    Petschow, M., Peise, E., Bientinesi, P.: High-performance solvers for dense hermitian eigenproblems. SIAM J. Sci. Comput. (SISC) 35(1), C1–C22 (2013). arXiv:1205.2107v2[cs.MS]Google Scholar
  13. 13.
    Münchhalfen, J.: Performance analysis and comparison of parallel eigensolvers on blue gene architectures. Berichte des Forschungszentrums Jülich (4359) 65 p. (2013).

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Inge Gutheil
    • 1
    Email author
  • Jan Felix Münchhalfen
    • 2
  • Johannes Grotendorst
    • 1
  1. 1.Institute for Advanced SimulationJülich Supercomputing Centre, Forschungszentrum Jülich GmbHJülichGermany
  2. 2.IT Center of RWTH Aachen UniversityAachenGermany

Personalised recommendations