Advertisement

Abstract

Timed-release encryption is a kind of encryption scheme that a recipient can decrypt only after a specified amount of time T (assuming that we have a moderately precise estimate of his computing power). A revocable timed-release encryption is one where, before the time T is over, the sender can “give back” the timed-release encryption, provably loosing all access to the data. We show that revocable timed-release encryption without trusted parties is possible using quantum cryptography (while trivially impossible classically).

Along the way, we develop two proof techniques in the quantum random oracle model that we believe may have applications also for other protocols.

Finally, we also develop another new primitive, unknown recipient encryption, which allows us to send a message to an unknown/unspecified recipient over an insecure network in such a way that at most one recipient will get the message.

Keywords

Random Oracle Quantum Memory Random Oracle Model Message Space Oracle Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alleaume, R., Bouda, J., Branciard, C., Debuisschert, T., Dianati, M., Gisin, N., Godfrey, M., Grangier, P., Langer, T., Leverrier, A., Lutkenhaus, N., Painchault, P., Peev, M., Poppe, A., Pornin, T., Rarity, J., Renner, R., Ribordy, G., Riguidel, M., Salvail, L., Shields, A., Weinfurter, H., Zeilinger, A.: Secoqc white paper on quantum key distribution and cryptography. arXiv:quant-ph/0701168v1 (2007)Google Scholar
  2. 2.
    Ambainis, A., Mosca, M., Tapp, A., Wolf, R.: Private quantum channels. In: FOCS 2000, pp. 547–553. IEEE (2000)Google Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing 1984, pp. 175–179. IEEE Computer Society (1984)Google Scholar
  4. 4.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS 2012, pp. 326–349. ACM, New York (2012)Google Scholar
  5. 5.
    Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Cachin, C., Maurer, U.: Unconditional security against memory-bounded adversaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996), http://arxiv.org/abs/quant-ph/9512032v2 CrossRefGoogle Scholar
  9. 9.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)Google Scholar
  10. 10.
    Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: FOCS 2005, pp. 449–458 (2005), Full version is arXiv:quant-ph/0508222v2Google Scholar
  11. 11.
    Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. In: USENIX 2004, SSYM 2004, p. 21. USENIX Association, Berkeley (2004)Google Scholar
  12. 12.
    Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of any quantum operation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 794–811. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefMATHGoogle Scholar
  14. 14.
    European Parliament & Council. Directive 2006/24/ec, directive on the retention of data generated or processed in connection with the provision of publicly available electronic communications services or of public communications networks. Official Journal of the European Union L 105, 54–63 (2006), http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:105:0054:0063:EN:PDF
  15. 15.
    Khodjasteh, K., Sastrawan, J., Hayes, D., Green, T.J., Biercuk, M.J., Viola, L.: Designing a practical high-fidelity long-time quantum memory. Nature Communications 4 (2013)Google Scholar
  16. 16.
    Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the random oracle model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 39–50. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Müller-Quade, J., Unruh, D. (January 2007), http://eprint.iacr.org/2006/422
  18. 18.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 10th anniversary edn. Cambridge University Press, Cambridge (2010)Google Scholar
  19. 19.
    Palmer, E.: Wikileaks backup plan could drop diplomatic bomb. CBS News (December 2010), http://www.cbsnews.com/stories/2010/12/02/eveningnews/main7111845.shtml
  20. 20.
    Rabin, M.O.: Hyper-encryption by virtual satellite. Science Center Research Lecture Series (December 2003), http://athome.harvard.edu/programs/hvs/
  21. 21.
    Rivest, R.: Description of the LCS35 time capsule crypto-puzzle (April 1999), http://people.csail.mit.edu/rivest/lcs35-puzzle-description.txt
  22. 22.
    Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Technical Report MIT/LCS/TR-684, Massachusetts Institute of Technology (February 1996), http://theory.lcs.mit.edu/~rivest/RivestShamirWagner-timelock.ps
  23. 23.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 1994, pp. 124–134. IEEE Computer Society (1994)Google Scholar
  24. 24.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)CrossRefGoogle Scholar
  25. 25.
    Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. London A 452, 2551–2576 (1996)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Unruh, D.: Protokollkomposition und Komplexität (Protocol Composition and Complexity). PhD thesis, Universität Karlsruhe (TH), Berlin (2006), http://www.cs.ut.ee/~unruh/publications/unruh07protokollkomposition.html (in German)
  27. 27.
    Unruh, D.: Revocable quantum timed-release encryption. IACR ePrint 2013/606 (2013) (full version of this paper)Google Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Dominique Unruh
    • 1
  1. 1.University of TartuEstonia

Personalised recommendations