Advertisement

On the Complexity of UC Commitments

  • Juan A. Garay
  • Yuval Ishai
  • Ranjit Kumaresan
  • Hoeteck Wee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8441)

Abstract

Motivated by applications to secure multiparty computation, we study the complexity of realizing universally composable (UC) commitments. Several recent works obtain practical UC commitment protocols in the common reference string (CRS) model under the DDH assumption. These protocols have two main disadvantages. First, even when applied to long messages, they can only achieve a small constant rate (namely, the communication complexity is larger than the length of the message by a large constant factor). Second, they require computationally expensive public-key operations for each block of each message being committed.

Our main positive result is a UC commitment protocol that simultaneously avoids both of these limitations. It achieves an optimal rate of 1 (strictly speaking, 1 − o(1)) by making only few calls to an ideal oblivious transfer (OT) oracle and additionally making a black-box use of a (computationally inexpensive) PRG. By plugging in known efficient protocols for UC-secure OT, we get rate-1, computationally efficient UC commitment protocols under a variety of setup assumptions (including the CRS model) and under a variety of standard cryptographic assumptions (including DDH). We are not aware of any previous UC commitment protocols that achieve an optimal asymptotic rate.

A corollary of our technique is a rate-1 construction for UC commitment length extension, that is, a UC commitment protocol for a long message using a single ideal commitment for a short message. The extension protocol additionally requires the use of a semi-honest (stand-alone) OT protocol. This raises a natural question: can we achieve UC commitment length extension while using only inexpensive PRG operations as is the case for stand-alone commitments and UC OT? We answer this question in the negative, showing that the existence of a semi-honest OT protocol is necessary (and sufficient) for UC commitment length extension. This shows, quite surprisingly, that UC commitments are qualitatively different from both stand-alone commitments and UC OT.

Keywords

Universal composability UC commitments oblivious transfer 

References

  1. 1.
    Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: 28th Annual ACM Symposium on Theory of Computing (STOC), pp. 479–488. ACM Press (May 1996)Google Scholar
  3. 3.
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Analysis and improvement of Lindell’s UC-secure commitment schemes. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 534–551. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Brassard, G., Crepeau, C., Robert, J.-M.: Information theoretic reduction among disclosure problems. In: FOCS, pp. 168–173 (1986)Google Scholar
  6. 6.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 136–145. IEEE (October 2001)Google Scholar
  7. 7.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th Annual ACM Symposium on Theory of Computing (STOC), pp. 494–503. ACM Press (May 2002)Google Scholar
  9. 9.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and composable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg (1988)Google Scholar
  12. 12.
    Damgård, I., David, B., Giacomelli, I., Nielsen, J.B.: Homomorphic uc commitments in uc (2013) (manuscript)Google Scholar
  13. 13.
    Damgård, I., Groth, J.: Non-interactive and reusable non-malleable commitment schemes. In: 35th Annual ACM Symposium on Theory of Computing (STOC), pp. 426–437. ACM Press (June 2003)Google Scholar
  14. 14.
    Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Damgård, I., Nielsen, J.B., Orlandi, C.: On the necessary and sufficient assumptions for UC computation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 109–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Fischlin, M., Libert, B., Manulis, M.: Non-interactive and reusable universally composable string commitments with adaptive security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Franklin, M., Yung, M.: Communication complexity of secure computation. In: STOC, pp. 699–710 (1992)Google Scholar
  18. 18.
    Frederiksen, T., Jakobsen, T., Nielsen, J., Nordholt, P., Orlandi, C.: Minilego: Efficient secure two-party computation from general assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Fujisaki, E.: A framework for efficient fully-equipped UC commitments. ePrint 2012/379 (2012)Google Scholar
  20. 20.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st Annual ACM Symposium on Theory of Computing (STOC), pp. 25–32. ACM Press (May 1989)Google Scholar
  21. 21.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Hofheinz, D., Müller-Quade, J., Unruh, D.: On the (im-)possibility of extending coin toss. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 504–521. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Jutla, C.S., Roy, A.: Shorter quasi-adaptive nizk proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)Google Scholar
  27. 27.
    Kraschewski, D.: Complete primitives for information-theoretically secure two-party computation (2013), http://digbib.ubka.uni-karlsruhe.de/volltexte/1000035100 (retrieved October 14, 2013)
  28. 28.
    Lindell, Y.: Highly-efficient universally-composable commitments based on the DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Lindell, Y., Zarosim, H.: On the feasibility of extending oblivious transfer. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 519–538. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    Maji, H., Prabhakaran, M., Rosulek, M.: Cryptographic complexity classes and computational intractability assumptions. In: ICS, pp. 266–289 (2010)Google Scholar
  31. 31.
    Nielsen, J., Nordholt, P., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  33. 33.
    Nishimaki, R., Fujisaki, E., Tanaka, K.: An eficient non-interactive universally composable string-commitment scheme. IEICE Transactions, 167–175 (2012)Google Scholar
  34. 34.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Juan A. Garay
    • 1
  • Yuval Ishai
    • 2
  • Ranjit Kumaresan
    • 2
  • Hoeteck Wee
    • 3
  1. 1.Yahoo LabsUSA
  2. 2.Department of Computer ScienceTechnionHaifaIsrael
  3. 3.ENSParisFrance

Personalised recommendations