Advertisement

A Full Characterization of Completeness for Two-Party Randomized Function Evaluation

  • Daniel Kraschewski
  • Hemanta K. Maji
  • Manoj Prabhakaran
  • Amit Sahai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8441)

Abstract

We settle a long standing open problem which has pursued a full characterization of completeness of (potentially randomized) finite functions for 2-party computation that is secure against active adversaries. Since the first such complete function was discovered [Kilian, FOCS 1988], the question of which finite 2-party functions are complete has been studied extensively, leading to characterization in many special cases. In this work, we completely settle this problem.

We provide a polynomial time algorithm to test whether a 2-party finite secure function evaluation (SFE) functionality (possibly randomized) is complete or not. The main tools in our solution include:

We show that any function f, if complete, can implement any (randomized) circuit C using only O(|C| + κ) calls to f, where κ is the statistical security parameter. In particular, for any two-party functionality g, this establishes a universal notion of its quantitative “cryptographic complexity” independent of the setup and has close connections to circuit complexity.

Keywords

Active Adversary Full Characterization Noisy Channel Circuit Complexity Oblivious Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic complexity of the worst functions (2013), http://www.cs.umd.edu/~ranjit/BIKK.pdf (retrieved October 16, 2013)
  3. 3.
    Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure computation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Simon, J. (ed.) STOC, pp. 1–10. ACM (1988)Google Scholar
  5. 5.
    Brassard, G., Crépeau, C., Robert, J.-M.: All-or-nothing disclosure of secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987)Google Scholar
  6. 6.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01-016 (2001); Previous version “A unified framework for analyzing security of protocols” available at the ECCC archive TR01-016. Extended abstract in FOCS 2001 (2001)Google Scholar
  7. 7.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2005); Revised version of [6]Google Scholar
  8. 8.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Simon, J. (ed.) STOC, pp. 11–19. ACM (1988)Google Scholar
  9. 9.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box constructions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 387–402. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience, New York (1991)Google Scholar
  11. 11.
    Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions (extended abstract). In: FOCS, pp. 42–52. IEEE (1988)Google Scholar
  12. 12.
    Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Fitzi, M., Garay, J.A., Maurer, U.M., Ostrovsky, R.: Minimal complete primitives for secure multi-party computation. J. Cryptology 18(1), 37–61 (2005)Google Scholar
  14. 14.
    Fitzi, M., Maurer, U.M.: From partial consistency to global broadcast. In: Frances Yao, F., Luks, E.M. (eds.) STOC, pp. 494–503. ACM (2000)Google Scholar
  15. 15.
    Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University Press (2004)Google Scholar
  16. 16.
    Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: Aho, A.V. (ed.) STOC, pp. 218–229. ACM (1987); See [15, Ch. 7] for more detailsGoogle Scholar
  17. 17.
    Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86. Springer, Heidelberg (1988)Google Scholar
  18. 18.
    Haber, S., Micali, S.: Unpublished manuscript (1986)Google Scholar
  19. 19.
    Haitner, I.: Semi-honest to malicious oblivious transfer - the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: STOC, pp. 99–108. ACM (2006)Google Scholar
  21. 21.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger, J.: Constant-rate oblivious transfer from noisy channels. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer, Heidelberg (2011)Google Scholar
  22. 22.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)Google Scholar
  23. 23.
    Kilian, J.: Founding cryptography on oblivious transfer. In: Simon, J. (ed.) STOC, pp. 20–31. ACM (1988)Google Scholar
  24. 24.
    Kilian, J.: A general completeness theorem for two-party games. In: Koutsougeras, C., Vitter, J.S. (eds.) STOC, pp. 553–560. ACM (1991)Google Scholar
  25. 25.
    Kilian, J.: More general completeness theorems for secure two-party computation. In: Frances Yao, F., Luks, E.M. (eds.) STOC, pp. 316–324. ACM (2000)Google Scholar
  26. 26.
    Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness in private computations. SIAM J. Comput. 29(4), 1189–1208 (2000)Google Scholar
  27. 27.
    Kraschewski, D., Maji, H.K., Prabhakaran, M., Sahai, A.: A full characterization of completeness for two-party randomized function evaluation. IACR Cryptology ePrint Archive, 2014:50 (2014)Google Scholar
  28. 28.
    Kraschewski, D., Müller-Quade, J.: Completeness theorems with constructive proofs for finite deterministic 2-party functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 364–381. Springer, Heidelberg (2011)Google Scholar
  29. 29.
    Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness in multi-party private computations. In: FOCS, pp. 478–489. IEEE Computer Society (1994)Google Scholar
  30. 30.
    Lindell, Y., Omri, E., Zarosim, H.: Completeness for symmetric two-party functionalities - revisited. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 116–133. Springer, Heidelberg (2012)Google Scholar
  31. 31.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: A unified characterization of completeness in secure function evaluation. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 40–59. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Rabin, M.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory (1981)Google Scholar
  33. 33.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Johnson, D.S. (ed.) STOC, pp. 73–85. ACM (1989)Google Scholar
  34. 34.
    Wiesner, S.: Conjugate coding. SIGACT News 15, 78–88 (1983)Google Scholar
  35. 35.
    Yao, A.C.-C.: Some complexity questions related to distributive computing (preliminary report). In: STOC, pp. 209–213. ACM (1979)Google Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Daniel Kraschewski
    • 1
  • Hemanta K. Maji
    • 2
  • Manoj Prabhakaran
    • 3
  • Amit Sahai
    • 4
  1. 1.TechnionHaifaIsrael
  2. 2.Los AngelesUSA
  3. 3.Univ. of IllinoisUrbana-ChampaignUSA
  4. 4.Univ. of CaliforniaLos AngelesUSA

Personalised recommendations