Unifying Leakage Models: From Probing Attacks to Noisy Leakage.

  • Alexandre Duc
  • Stefan Dziembowski
  • Sebastian Faust
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8441)

Abstract

A recent trend in cryptography is to formally show the leakage resilience of cryptographic implementations in a given leakage model. A realistic model is to assume that leakages are sufficiently noisy, following real-world observations. While the noisy leakage assumption has first been studied in the seminal work of Chari et al. (CRYPTO 99), the recent work of Prouff and Rivain (Eurocrypt 2013) provides the first analysis of a full masking scheme under a physically motivated noise model. Unfortunately, the security analysis of Prouff and Rivain has three important shortcomings: (1) it requires leak-free gates, (2) it considers a restricted adversarial model (random message attacks), and (3) the security proof has limited application for cryptographic settings. In this work, we provide an alternative security proof in the same noisy model that overcomes these three challenges. We achieve this goal by a new reduction from noisy leakage to the important theoretical model of probing adversaries (Ishai et al  – CRYPTO 2003). Our work can be viewed as a next step of closing the gap between theory and practice in leakage resilient cryptography: while our security proofs heavily rely on concepts of theoretical cryptography, we solve problems in practically motivated leakage models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-Order Masking Schemes for S-Boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 366–384. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Clavier, C., Coron, J.-S., Dabbous, N.: Differential Power Analysis in the Presence of Hardware Countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Coron, J.-S., Kizhvatov, I.: Analysis and Improvement of the Random Delay Countermeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Duc, A., Dziembowski, S., Faust, S.: Unifying Leakage Models: from Probing Attacks to Noisy Leakage. Cryptology ePrint Archive, Report 2014/079 (2014), http://eprint.iacr.org/
  8. 8.
    Dziembowski, S., Faust, S.: Leakage-Resilient Circuits without Computational Assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography. In: FOCS, pp. 293–302 (2008)Google Scholar
  10. 10.
    Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting Circuits from Leakage: the Computationally-Bounded and Noisy Cases. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Goldwasser, S., Rothblum, G.N.: Securing computation against continuous leakage. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 59–79. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Goldwasser, S., Rothblum, G.N.: How to Compute in the Presence of Leakage. In: FOCS, pp. 31–40 (2012)Google Scholar
  13. 13.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis (The “Duplication” Method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Juma, A., Vahlis, Y.: Protecting Cryptographic Keys against Continual Leakage. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Katz, J., Vaikuntanathan, V.: Signature Schemes with Bounded Leakage Resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards (Advances in Information Security). Springer-Verlag New York, Inc., Secaucus (2007)Google Scholar
  20. 20.
    Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Miles, E., Viola, E.: Shielding circuits with groups. In: STOC, pp. 251–260 (2013)Google Scholar
  22. 22.
    Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Prouff, E., Rivain, M.: Masking against Side-Channel Attacks: A Formal Security Proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Prouff, E., Roche, T.: Higher-Order Glitches Free Implementation of the AES Using Secure Multi-party Computation Protocols. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Rothblum, G.N.: How to Compute under \({\cal{AC}}^{\sf0}\) Leakage without Secure Hardware. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 552–569. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-Resilient Symmetric Cryptography under Empirically Verifiable Assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard, S.: The World Is Not Enough: Another Look on Second-Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Veyrat-Charvillon, N., Standaert, F.-X.: Adaptive Chosen-Message Side-Channel Attacks. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 186–199. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Alexandre Duc
    • 1
  • Stefan Dziembowski
    • 2
    • 3
  • Sebastian Faust
    • 1
  1. 1.Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.University of WarsawPoland
  3. 3.Sapienza University of RomeItaly

Personalised recommendations