DFT Study of the Cr\(_8\) Molecular Magnet Within Chain-Model Approximations

  • Valerio BelliniEmail author
  • Daria M. Tomecka
  • Bartosz Brzostowski
  • Michał Wojciechowski
  • Filippo Troiani
  • Franca Manghi
  • Marco Affronte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8385)


We present a density functional theory (DFT) study of the electronic and magnetic properties of the Cr\(_8\) molecular ring. The all-electron linearized augmented plane wave method (LAPW) implemented in the Wien2k package and pseudopotential method implemented in SIESTA package are used to calculate the electronic states, exchange coupling parameters of an infinite chain model system of Cr\(_8\). We demonstrate how, under opportune modifications to the ring cycle structure, different one-dimensional chain models can be devised, with the capability of mimicking with good approximation the electronic and magnetic properties of the original Cr\(_8\) molecule. Such models offer an unique opportunity, in virtue of the reduced computational effort, to carry out extensive investigations of a whole set of molecules belonging to the Cr-based molecular rings family.


Density functional theory Cr antiferromagnetic rings 



The calculations were performed on computer facilities granted by the CNR-INFM Iniziativa Trasversale Calcolo Parallelo at the CINECA supercomputing center (Italy), Poznan Supercomputing and Networking Center (Poland) as well as within DECI programme by the PRACE-2IP (FP7/2007-2013) under grant agreement no RI-283493. Support from the Polish MNiSW through the grant No N519 579138 is also acknowledged.


  1. 1.
    Affronte, M., Carretta, S., Timco, G.A., Winpenny, R.E.P.: A ring cycle: studies of heterometallic wheels. Chem. Commun. 18, 1789 (2007)CrossRefGoogle Scholar
  2. 2.
    van Slageren, J., Sessoli, R., Gatteschi, D., Smith, A.A., Helliwell, M., Winpenny, R.E.P., Cornia, A., Barra, A.L., Jansen, A.G.M., Rentschler, E., Timco, G.A.: Magnetic anisotropy of the antiferromagnetic Ring [Cr\(_8\)F\(_8\)Piv\(_{16}\)]. Chem. Eur. J. 8, 277 (2002)CrossRefGoogle Scholar
  3. 3.
    Meier, F., Levy, J., Loss, D.: Quantum computing with spin cluster qubits. Phys. Rev. Lett. 90, 047901 (2003)CrossRefGoogle Scholar
  4. 4.
    Troiani, F., Ghirri, A., Affronte, M., Carretta, S., Santini, P., Amoretti, G., Piligkos, S., Timco, G., Winpenny, R.E.P.: Molecular engineering of antiferromagnetic rings for quantum computation. Phys. Rev. Lett. 94, 207208 (2005)CrossRefGoogle Scholar
  5. 5.
    Baker, M.L., Timco, G.A., Piligkos, S., Mathieson, J.S., Mutka, H., Tuna, F., Kozowski, P., Antkowiak, M., Guidi, T., Gupta, T., Rath, H., Woolfson, R.J., Kamieniarz, G., Pritchard, R.G., Weihe, H., Cronin, L., Rajaraman, G., Collison, D., McInnes, E.J.L., Winpenny, R.E.P.: A classification of spin frustration in molecular magnets from a physical study of large oddnumbered-metal, odd electron rings. Proc. Natl. Acad. Sci. 109, 19113 (2012)CrossRefGoogle Scholar
  6. 6.
    Baker, M.L., Guidi, T., Carretta, S., Ollivier, J., Mutka, H., Gudel, H.U., Timco, G.A., McInnes, E.J.L., Amoretti, G., Winpenny, R.E.P., Santini, P.: Spin dynamics of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic neutron scattering. Nat. Phys. 8, 906 (2012)CrossRefGoogle Scholar
  7. 7.
    Kozłowski, P., Kamieniarz, G., Antkowiak, M., Tuna, F., Timco, G.A., Winpenny, R.E.P.: Phenomenological modeling of the anisotropic molecular-based ring Cr7Cd. Polyhedron 28, 1852 (2009)CrossRefGoogle Scholar
  8. 8.
    Antkowiak, M., Kozowski, P., Kamieniarz, G., Timco, G.A., Tuna, F., Winpenny, R.E.P.: Detection of ground states in frustrated molecular rings by the in-field local magnetization profiles. Phys. Rev. B 87, 184430 (2013)CrossRefGoogle Scholar
  9. 9.
    Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060 (1975)CrossRefGoogle Scholar
  10. 10.
    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: WIEN2k, An Augmented Plane Wave \(+\) Local Orbitals Program for Calculating Crystal Properties. Techn. Universität Wien, Austria (2001). (K. Schwarz, Techn. Universität Wien, Austria)Google Scholar
  11. 11.
    Bellini, V., Olivieri, A., Manghi, F.: Density-functional study of the Cr\(_8\) antiferromagnetic ring. Phys. Rev. B 73, 184431 (2006)CrossRefGoogle Scholar
  12. 12.
    Bellini, V., Affronte, M.: A density-functional study of heterometallic Cr-based molecular rings. J. Phys. Chem. B 114, 14797 (2010)CrossRefGoogle Scholar
  13. 13.
    Bellini, V., Lorusso, G., Candini, A., Wernsdorfer, W., Faust, T.B., Timco, G.A., Winpenny, R.E.P., Affronte, M.: Propagation of spin information at supra-molecular scale through hetero-aromatic linkers. Phys. Rev. Lett. 106, 227205 (2011)CrossRefGoogle Scholar
  14. 14.
    Ślusarski, T., Brzostowski, B., Tomecka, D., Kamieniarz, G.: Electronic structure and magnetic properties of a molecular octanuclear chromium-based ring. J. Nanosci. Nanotechnol. 11, 9080 (2011)CrossRefGoogle Scholar
  15. 15.
    Brzostowski, B., Lemański, R., Ślusarski, T., Tomecka, D., Kamieniarz, G.: Chromium-based rings within the DFT and FalicovKimball model approach. J. Nanopart. Res. 15, 1528 (2013)CrossRefGoogle Scholar
  16. 16.
    Ordejón, P., Artacho, E., Soler, J.M.: Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B (Rapid Comm.) 53, R10441 (1996)CrossRefGoogle Scholar
  17. 17.
    Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The siesta method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002)CrossRefGoogle Scholar
  18. 18.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  19. 19.
    Tomecka, D., Bellini, V., Manghi, F., Affronte, M., Kamieniarz, G.: Ab-initio study on a chain model of the Cr\(_8\) molecular magnet. Phys. Rev. B 77, 224401 (2008)CrossRefGoogle Scholar
  20. 20.
    Brzostowski, B., Ślusarski, T., Kamieniarz, G.: DFT study of octanuclear molecular chromium-based ring using new pseudopotential parameters. Acta Phys. Pol. A 121, 1115 (2012)Google Scholar
  21. 21.
    Ślusarski, T., Brzostowski, B., Tomecka, D., Kamieniarz, G.: Application of the package SIESTA to linear models of a molecular chromium-based ring. Acta Phys. Pol. A 118, 967 (2010)Google Scholar
  22. 22.
    Rohrbach, A., Hafner, J., Kresse, G.: Ab initio study of the (0001) surfaces of hematite and chromia: influence of strong electronic correlations. Phys. Rev. B 70, 125426 (2004)CrossRefGoogle Scholar
  23. 23.
    Liechtenstein, A.I., Katnelson, M.I., Antropov, V.P., Gubanov, V.A.: Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Materials 67, 65 (1987)CrossRefGoogle Scholar
  24. 24.
    McInnes, E.J.L., Piligkos, S., Timco, G.A., Winpenny, R.E.P.: Studies of chromium cages and wheels. Coord. Chem. Rev. 249, 2577 (2005)CrossRefGoogle Scholar
  25. 25.
    Corradini, V., Biagi, R., del Pennino, U., Renzi, V.D., Gambardella, A., Affronte, M., Muryn, C.A., Timco, G.A., Winpenny, R.E.P.: Isolated heterometallic Cr\(_7\)Ni rings grafted on Au(111) surface. Inorg. Chem. 46, 4937 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Valerio Bellini
    • 1
    • 2
    Email author
  • Daria M. Tomecka
    • 3
  • Bartosz Brzostowski
    • 4
  • Michał Wojciechowski
    • 4
  • Filippo Troiani
    • 1
  • Franca Manghi
    • 1
  • Marco Affronte
    • 1
  1. 1.CNR-INFM-National Research Center on nanoStructures and bioSystems at Surfaces (S3)ModenaItaly
  2. 2.Istituto di Struttura della Materia (ISM) - Consiglio Nazionale delle Ricerche (CNR)TriesteItaly
  3. 3.Faculty of PhysicsA. Mickiewicz UniversityPoznańPoland
  4. 4.Institute of PhysicsUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations