Advertisement

Tubular Micro-nanorobots: Smart Design for Bio-related Applications

  • Samuel Sánchez
  • Wang Xi
  • Alexander A. Solovev
  • Lluís Soler
  • Veronika Magdanz
  • Oliver G. Schmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8336)

Abstract

We designed microrobots in the form of autonomous and remotely guided microtubes. One of the challenges at small scales is the effective conversion of energy into mechanical force to overcome the high viscosity of the fluid at low Reynolds numbers. This can be achieved by integration of catalytic nano-materials and processes to decompose chemical fuels. However, up to now, mostly hydrogen peroxide has been employed as a fuel which renders the potential applications in biomedicine and in vivo experiments. Therefore, other sources of energy to achieve motion at the micro- nanoscale are highly sought-after. Here, we present different types of tubular micro- and nanorobots, alternative approaches to toxic fuels and also, steps towards the use of tubular microrobots as micro- and nanotools.

Keywords

rolled-up nanorobotics self-propulsion jet engines autonomous 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic Molecular Motors and Mechanical Machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)CrossRefGoogle Scholar
  2. 2.
    Vallee, R.B., Hook, P.: Molecular Motors: A Magnificent Machine. Nature 421, 701–702 (2003)CrossRefGoogle Scholar
  3. 3.
    Sen, A., Ibele, M., Hong, Y., Velegol, D.: Chemo and Phototactic Nano/Microbots. Faraday Discuss. 143, 15–27 (2009)CrossRefGoogle Scholar
  4. 4.
    Paxton, W.F., Kistler, K.C., Olmeda, C.C., Sen, A., St. Angelo, S.K., Cao, Y., Mal-louk, T.E., Lammert, P.E., Crespi, V.H.: Catalytic Nanomotors: Autonomous Movement of Striped Nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004)CrossRefGoogle Scholar
  5. 5.
    Mallouk, T.E., Sen, A.: Powering Nanorobots. Sci. Am. 300, 72–77 (2009)CrossRefGoogle Scholar
  6. 6.
    Ozin, G.A., Manners, I., Fournier-Bidoz, S., Arsenault, A.: Dream Nanomachines. Adv. Mater. 17, 3011–3018 (2005)CrossRefGoogle Scholar
  7. 7.
    Wang, J.: Can Man-Made Nanomachines Compete with Nature Biomotors? ACS Nano 3, 4 (2009)CrossRefGoogle Scholar
  8. 8.
    Mirkovic, T., Zacharia, N.S., Scholes, G.D., Ozin, G.A.: Fuel for Thought: Chemically Powered Nanomotors Out-Swim Nature’s Flagellated Bacteria. ACS Nano 4, 1782–1789 (2010)CrossRefGoogle Scholar
  9. 9.
    Wang, J., Manesh, K.M.: Motion Control at the Nanoscale. Small 6, 338–345 (2010)CrossRefGoogle Scholar
  10. 10.
    Laocharoensuk, R., Burdick, J., Wang, J.: Carbon-Nanotuble-Induced Acceleration of Catalytic Nanomotors. ACS Nano 2, 1069–1075 (2008)CrossRefGoogle Scholar
  11. 11.
    Kline, T.R., Paxton, W.F., Mallouk, T.E., Sen, A.: Catalytic Nanomotors: Remote-Controlled Autonomous Movement of Striped Metallic Nanorods. Angew. Chem. Int. Ed. 44, 744–746 (2005)CrossRefGoogle Scholar
  12. 12.
    Pumera, M.: Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale 2, 1643–1649 (2010)CrossRefGoogle Scholar
  13. 13.
    Solovev, A.A., Mei, Y.F., Urena, E.B., Huang, G., Schmidt, O.G.: Catalytic Microtubular Jet Engines Self-Propelled by Accumulated Gas Bubbles. Small 5, 1688–1692 (2009)CrossRefGoogle Scholar
  14. 14.
    Mei, Y.F., Huang, G.S., Solovev, A.A., Urena, E.B., Monch, I., Ding, F., Reindl, T., Fu, R.K.Y., Chu, P.K., Schmidt, O.G.: Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers. Adv. Mater. 20, 4085–4090 (2008)CrossRefGoogle Scholar
  15. 15.
    Mei, Y.F., Solovev, A.A., Sanchez, S., Schmidt, O.G.: Rolled-Up Nanotech on Polymers: from Basic Perception to Self-Propelled Catalytic Microengines. Chem. Soc. Rev. 40, 2109–2119 (2011)CrossRefGoogle Scholar
  16. 16.
    Harazim, S.M., Xi, W., Schmidt, C.K., Sanchez, S., Schmidt, O.G.: Fabrication and Applications of Large Arrays of Multifunctional Rolled-Up SiO/SiO2 Microtubes. J. Mater. Chem. 22, 2878–2884 (2012)CrossRefGoogle Scholar
  17. 17.
    Manesh, K.M., Cardona, M., Yuan, R., Clark, M., Kagan, D., Balasubramanian, S., Wang, J.: Template-Assisted Fabrication of Salt-Independent Catalytic Tubular Microengines. ACS Nano 4, 1799–1804 (2010)CrossRefGoogle Scholar
  18. 18.
    Solovev, A.A., Sanchez, S., Pumera, M., Mei, Y.F., Schmidt, O.G.: Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Micro-objects. Adv. Mater. 20, 2430–2435 (2010)Google Scholar
  19. 19.
    Sanchez, S., Solovev, A.A., Schulze, S., Schmidt, O.G.: Controlled Manipulation of Multiple Cells Using Catalytic Microbots. Chem. Commun. 47, 698–700 (2011)CrossRefGoogle Scholar
  20. 20.
    Sanchez, S., Ananth, A.N., Fomin, V.M., Viehrig, M., Schmidt, O.G.: Superfast Motion of Catalytic Microjet Engines at Physiological Temperature. J. Am. Chem. Soc. 133, 14860–14863 (2011)CrossRefGoogle Scholar
  21. 21.
    Solovev, A.A., Xi, W., Gracias, D.H., Harazim, S.M., Deneke, C., Sanchez, S., Schmidt, O.G.: Self-Propelled Nanotools. ACS Nano 6, 1751–1756 (2012)CrossRefGoogle Scholar
  22. 22.
    Xi, W., Solovev, A.A., Ananth, A.N., Gracias, D.H., Sanchez, S., Schmidt, O.G.: Rolled-Up Magnetic Microdrillers: Towards Remotely Controlled Minimally Invasive Surgery. Nanoscale 5, 1294–1297 (2013)CrossRefGoogle Scholar
  23. 23.
    Magdanz, V., Sanchez, S., Schmidt, O.G.: A Sperm Driven Micro-Bio-Robot. Adv. Mat. 25(45), 6581–6588 (2013)CrossRefGoogle Scholar
  24. 24.
    Bassik, N., Brafman, A., Zarafshar, A.M., Jamal, M., Luvsanjav, D., Selaru, F.M., Gracias, D.H.: Enzymatically Triggered Actuation of Miniaturized Tools. J. Am. Chem. Soc. 132, 16314–16317 (2010)CrossRefGoogle Scholar
  25. 25.
    Zhao, G., Sanchez, S., Schmidt, O.G., Pumera, M.: Micromotors with Built-In Compasses. Chem. Commun. 48, 10090–10092 (2012)CrossRefGoogle Scholar
  26. 26.
    Sanchez, S., Solovev, A.A., Harazim, S.M., Schmidt, O.G.: Microbots Swimming in the Flowing Streams of Microfluidic Channels. J. Am. Chem. Soc. 133, 701–703 (2011)CrossRefGoogle Scholar
  27. 27.
    Khalil, I.S.M., Magdanz, V., Sanchez, S., Schmidt, O.G., Abelmann, L., Misra, S.: Magnetic Control of Potential Microrobotic Drug Delivery Systems: Nanoparticles, Magnetotactic Bacteria and Self-Propelled Microjets. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5299–5302. IEEE Press, New York (2013)Google Scholar
  28. 28.
    Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for Minimally Invasive Medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)CrossRefGoogle Scholar
  29. 29.
    Peyer, K.E., Zhang, L., Nelson, B.J.: Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications. Nanoscale 5, 1259–1272 (2013)CrossRefGoogle Scholar
  30. 30.
    Schmidt, O.G., Eberl, K.: Nanotechnology: Thin Solid Films Roll Up into Nanotubes. Nature 410, 168 (2001)CrossRefGoogle Scholar
  31. 31.
    Sanchez, S., Solovev, A.A., Harazim, S.M., Deneke, C., Mei, Y.F., Schmidt, O.G.: The Smallest Man-Made Jet Engine. Chem. Rec. 11, 367–370 (2011)CrossRefGoogle Scholar
  32. 32.
    Soler, L., Martínez-Cisneros, C., Swiersy, A., Sánchez, S., Schmidt, O.G.: Thermal activation of catalytic microjets in blood samples using microfluidic chips. Lab Chip 13, 4299–4303 (2013)CrossRefGoogle Scholar
  33. 33.
    Leong, T.G., Randall, C.L., Benson, B.R., Bassik, N., Stern, G.M., Gracias, D.H.: Tetherless thermobiochemically actuated microgrippers. Proc. Natl. Acad. Sci. U. S. A. 106, 703–708 (2009)CrossRefGoogle Scholar
  34. 34.
    Martel, S., Tremblay, C.C., Ngakeng, S., Langlois, G.: Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl. Phys. Lett. 89, 233904 (2006)CrossRefGoogle Scholar
  35. 35.
    Angelani, L., Di Leonardi, R., Ruocco, G.: Self-Starting Micromotors in a Bacterial Bath. Phys. Rev. Lett. 102, 048104 (2009)Google Scholar
  36. 36.
    Kim, D., Liu, A., Diller, E., Sitti, M.: Chemotactic steering of bacteria propelled microbeads. Biomed. Microdevices 14, 1009–1017 (2012)CrossRefGoogle Scholar
  37. 37.
    Steager, E.B., Sakar, M.S., Kim, D.H., Kumar, V., Pappas, G.J., Kim, M.J.: Electrokinetic and optical control of bacterial microrobots. J. Micromech. Microeng. 21, 035001 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Samuel Sánchez
    • 1
    • 2
  • Wang Xi
    • 1
    • 2
  • Alexander A. Solovev
    • 1
  • Lluís Soler
    • 1
    • 2
  • Veronika Magdanz
    • 2
  • Oliver G. Schmidt
    • 2
    • 3
  1. 1.Max Planck Institute for Intelligent SystemsStuttgartGermany
  2. 2.Institute for Integrative NanosciencesIFW DresdenDresdenGermany
  3. 3.Material Systems for NanoelectronicsChemnitz University of TechnologyChemnitzGermany

Personalised recommendations