Drawing the Big Picture: Temporal Visualization of Dynamic Collaboration Graphs of OSS Software Forks

  • Amir Azarbakht
  • Carlos Jensen
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 427)


How can we understand FOSS collaboration better? Can social issues that emerge be identified and addressed as they happen? Can the community heal itself, become more transparent and inclusive, and promote diversity? We propose a technique to address these issues by quantitative analysis and temporal visualization of social dynamics in FOSS communities. We used social network analysis metrics to identify growth patterns and unhealthy dynamics; This gives the community a heads-up when they can still take action to ensure the sustainability of the project.


Open Source Software Social Network Analysis Betweenness Centrality Open Source Software Project Network Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans. Knowledge Discovery Data 3(4), Article 16, 36 p. (2009)Google Scholar
  2. 2.
    Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks. Presented at the Int. AAAI Conf. on Weblogs and Social Media (2009)Google Scholar
  3. 3.
    Bezrukova, K, Spell, C.S., Perry, J.L.: Violent Splits Or Healthy Divides? Coping With Injustice Through Faultlines. Personnel Psychology 63(3) (2010)Google Scholar
  4. 4.
    Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure in open source projects. In: Proc. of the 16th ACM SIGSOFT Int. Symposium on Foundations of Software Engineering, pp. 24–35. ACM, New York (2008)CrossRefGoogle Scholar
  5. 5.
    Brandes, U.: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2), 163–177 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ford, L.R., Folkerson, D.R.: A simple algorithm for finding maximal network flows and an application to the Hitchcock problem. Canadian Journal of Mathematics 9, 210–218 (1957)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw: Pract. Exper. 21(11), 1129–1164 (1991)Google Scholar
  8. 8.
    Hannemann, A., Klamma, R.: Community Dynamics in Open Source Software Projects: Aging and Social Reshaping. In: Petrinja, E., Succi, G., El Ioini, N., Sillitti, A. (eds.) OSS 2013. IFIP AICT, vol. 404, pp. 80–96. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Howison, J., Crowston, K.: The perils and pitfalls of mining SourceForge. In: Proceedings of the Int. Workshop on Mining Software Repositories (MSR 2004), pp. 7–11 (2004)Google Scholar
  10. 10.
    Howison, J., Inoue, K., Crowston, K.: Social dynamics of free and open source team communications. In: Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G. (eds.) Open Source Systems. IFIP, vol. 203, pp. 319–330. Springer, Boston (2006)CrossRefGoogle Scholar
  11. 11.
    Howison, J., Conklin, M., Crowston, K.: FLOSSmole: A collaborative repository for FLOSS research data and analyses. Int. Journal of Information Technology and Web Engineering 1(3), 17–26 (2006)CrossRefGoogle Scholar
  12. 12.
    Kuechler, V., Gilbertson, C., Jensen, C.: Gender Differences in Early Free and Open Source Software Joining Process. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.) OSS 2012. IFIP AICT, vol. 378, pp. 78–93. Springer, Heidelberg (2012)Google Scholar
  13. 13.
    Kunegis, J., Sizov, S., Schwagereit, F., Fay, D.: Diversity dynamics in online networks. In: Proc. of the 23rd ACM Conf. on Hypertext and Social Media, USA (2012)Google Scholar
  14. 14.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proc. of the SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (2005)Google Scholar
  15. 15.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure in large social and information networks. In: Proc. of the 17th Int. Conf. on World Wide Web (WWW 2008). ACM (2008)Google Scholar
  16. 16.
    Noack, A.: Energy models for graph clustering. J. Graph Algorithms Appl. 11(2), 453–480 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Nyman, L.: Understanding code forking in open source software. In: Proc. of the 7th Int. Conf. on Open Source Systems Doctoral Consortium, Salvador, Brazil (2011)Google Scholar
  18. 18.
    Nyman, L., Mikkonen, T., Lindman, J., Fougère, M.: Forking: the invisible hand of sustainability in open source software. In: Proc. of SOS 2011: Towards Sustainable Open Source (2011)Google Scholar
  19. 19.
    Robles, G., González-Barahona, J.M.: A comprehensive study of software forks: Dates, reasons and outcomes. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.) OSS 2012. IFIP AICT, vol. 378, pp. 1–14. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Sowe, S., Stamelos, L., Angelis, L.: Identifying knowledge brokers that yield software engineering knowledge in OSS projects. Information and Software Technology 48, 1025–1033 (2006)CrossRefGoogle Scholar
  21. 21.
    Torres, M.R.M., Toral, S.L., Perales, M., Barrero, F.: Analysis of the Core Team Role in Open Source Communities. In: 2011 Int. Conf. on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 109–114. IEEE (2011)Google Scholar
  22. 22.
    Zachary, W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33(4), 452–473 (1977)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Amir Azarbakht
    • 1
  • Carlos Jensen
    • 1
  1. 1.School of Electrical Engineering & Computer ScienceOregon State UniversityCorvallisUSA

Personalised recommendations