Ball Distance Estimation and Tracking System of Humanoid Soccer Robot

  • Widodo Budiharto
  • Bayu Kanigoro
  • Viska Noviantri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8407)

Abstract

Modern Humanoid Soccer Robots in uncontrolled environments need to be based on vision and versatile. This paper propose a method for object measurement and ball tracking method using Kalman Filter for Humanoid Soccer, because the ability to accurately track a ball is one of the important features for processing high-definition image. A color-based object detection is used for detecting a ball while PID controller is used for controlling pan tilt camera system. We also modify the robots controller CM-510 in order able to communicate efficiently using main controller. The proposed method is able to determine and estimate the position of a ball and kick the ball correctly with the success percentage greater than 90%. We evaluate and present the performance of the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ha, I., Tamura, Y., Asama, H., Han, J., Hong, D.W.: Development of open humanoid platform darwin-op. In: 2011 Proceedings of SICE Annual Conference (SICE), pp. 2178–2181. IEEE (2011)Google Scholar
  2. 2.
    Martín, F., Aguero, C., Cañas, J.M., Perdices, E.: Humanoid soccer player design (2010)Google Scholar
  3. 3.
    Blanes, F.: Embedded distributed vision system for humanoid soccer robot. Journal of Physical Agents 5(1), 55–62 (2011)Google Scholar
  4. 4.
    Behnke, S., Rojas, R.: A hierarchy of reactive behaviors handles complexity. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.) ECAI-WS 2000. LNCS (LNAI), vol. 2103, pp. 125–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Noh, S., Park, J., Joo, Y.: Intelligent tracking algorithm for manoeuvering target using kalman filter with fuzzy gain. Radar, Sonar & Navigation, IET 1(3), 241–247 (2007)CrossRefGoogle Scholar
  6. 6.
    Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., Maisonnier, B.: Mechatronic design of nao humanoid. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 769–774. IEEE (2009)Google Scholar
  7. 7.
    Hardkernel: Odroid X2, http://www.hardkernel.com/main/products/prdt_info.php?g_code=G135235611947 (accessed: September 30, 2013)
  8. 8.
    Lanius, P.: Bioloidccontrol, http://code.google.com/p/bioloidccontrol/ (accessed: September 30, 2013)
  9. 9.
    Robotis: RoboPlus, http://support.robotis.com/en/ (accessed: September 30, 2013)
  10. 10.
    Robotis: CM-510 controller, http://support.robotis.com/en/ (accessed: September 30, 2013)
  11. 11.
    Robotis: Dynamixel AX-12A robot actuator, http://www.robotis.com/xe/dynamixel_en (accessed: September 30, 2013)
  12. 12.
    Maggi, A., Guseo, T., Wegher, F., Pagello, E., Menegatti, E.: A light software architecture for a humanoid soccer robot. In: Workshop on Humanoid Soccer Robots of the IEEE-RAS International Conference on Humanoid Robots (Humanoids 2006), Genoa, Italy (2006)Google Scholar
  13. 13.
    Ghanai, M., Chafaa, K.: Kalman filter in control and modeling (2010)Google Scholar
  14. 14.

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Widodo Budiharto
    • 1
  • Bayu Kanigoro
    • 1
  • Viska Noviantri
    • 1
  1. 1.School of Computer ScienceBina Nusantara UniversityJakartaIndonesia

Personalised recommendations