Advertisement

Systems Biology: Developments and Applications

Chapter

Abstract

Systems biology relies on systems theory concepts and is applicable to both fundamental studies of cellular biology as well as applied research such as metabolic engineering. In this chapter, we map the context of systems biology developments and highlight its contribution in understanding the yeast carbon metabolism. Systems biology not only contributes towards the global overview of metabolism but also in combination with an integrative analysis approach facilitates the elucidation of molecular mechanisms. In particular we discuss the role of systems biology in unraveling the molecular details concerning glucose and galactose metabolism. In conclusion, this chapter provides an overview of the progress and impact of systems biology in carbon metabolism.

Keywords

Chemostat Culture Glucose Repression Central Carbon Metabolism Genome Scale Model Diauxic Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge financial support from UNICELLSYS and European Research Council.

References

  1. Agren R et al (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3):e1002980PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bertalanffy LV (1950) An outline of general systems theory. Br J Philos Sci 1(2):134–165Google Scholar
  3. Blank LM, Sauer U (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150(4):1085–1093PubMedCrossRefGoogle Scholar
  4. Brauer MJ et al (2005) Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol Biol Cell 16:2503–2517PubMedCentralPubMedCrossRefGoogle Scholar
  5. Van den Brink J et al (2009) Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions. Microbiol (Reading, Engl), 155(Pt 4):1340–1350Google Scholar
  6. Bro C et al (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71(11):6465–6472PubMedCentralPubMedCrossRefGoogle Scholar
  7. Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207PubMedCrossRefGoogle Scholar
  8. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Sci (NY) 295(5560):1664–1669CrossRefGoogle Scholar
  9. Daran-Lapujade P et al (2004) Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 279(10):9125–9138PubMedCrossRefGoogle Scholar
  10. DeRisi JL (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278(5338):680–686PubMedCrossRefGoogle Scholar
  11. Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9(641):1–17Google Scholar
  12. Famili I et al (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253PubMedCentralPubMedCrossRefGoogle Scholar
  13. Feder ME, Walser J-C (2005) The biological limitations of transcriptomics in elucidating stress and stress responses. J Evol Biol 18(4):901–910PubMedCrossRefGoogle Scholar
  14. Fell DA (2010). Evolution of central carbon metabolism. Mol Cell 39(5):663–664Google Scholar
  15. Fendt S-M, Buescher JM et al (2010a) Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. Mol Syst Biol 6(356):356PubMedCentralPubMedGoogle Scholar
  16. Fendt S-M, Oliveira AP et al (2010b) Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. Mol Syst Biol 6(432):432PubMedCentralPubMedGoogle Scholar
  17. Ferea TL et al (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci USA 96:9721–9726PubMedCentralPubMedCrossRefGoogle Scholar
  18. Flick KM et al (2003) Grr1-dependent Inactivation of Mth1 mediates Glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell 14:3230–3241PubMedCentralPubMedCrossRefGoogle Scholar
  19. Flikweert MT et al (1996) Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12:247–257PubMedCrossRefGoogle Scholar
  20. Förster J et al (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253PubMedCentralPubMedCrossRefGoogle Scholar
  21. Gasch AP et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11(12):4241–4257Google Scholar
  22. Geistlinger L, Csaba G, Dirmeier S, Küffner R, Zimmer R (2013) A comprehensive gene regulatory network for the diauxic shift in Saccharomyces cerevisiae. Nucleic Acid Res 41(18):8452–8463Google Scholar
  23. Goffeau A et al (1996) Life with 6000 genes. Science 274(5287):546–567PubMedCrossRefGoogle Scholar
  24. Hatzimanikatis V et al (2005) Exploring the diversity of complex metabolic networks. Bioinform (Oxf, Engl) 21(8):1603–1609Google Scholar
  25. Hauf J, Zimmermann FK, Müller S (2000) Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzym Microb Technol 26:688–698CrossRefGoogle Scholar
  26. Herrgård MJ et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26(10):1155–1160PubMedCrossRefGoogle Scholar
  27. Herrgård MJ et al (2006) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 16(5):627–635PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188:615–621PubMedCrossRefGoogle Scholar
  29. Hong K-K et al (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci USA 108(29):12179–12184PubMedCentralPubMedCrossRefGoogle Scholar
  30. Howard SC, Deminoff SJ, Herman PK (2006) Increased phosphoglucomutase activity suppresses the galactose growth defect associated with elevated levels of Ras signaling in S. cerevisiae. Curr Genet 49(1):1–6PubMedCrossRefGoogle Scholar
  31. Hu Z, Killion PJ, Iyer VR (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39(5):683–687PubMedCrossRefGoogle Scholar
  32. Ihmels J, Levy R, Barkai N (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol 22(1):86–92PubMedCrossRefGoogle Scholar
  33. Jewett MC et al (2013) In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation. Mol Syst Biol 9(678):1–8Google Scholar
  34. De Jongh WA et al (2008) The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. Biotechnol Bioeng 101(2):317–326Google Scholar
  35. Kaniak A et al (2004) Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot Cell 3(1):221–231PubMedCentralPubMedCrossRefGoogle Scholar
  36. Karr JR et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kell DB et al (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3(7):557–565PubMedCrossRefGoogle Scholar
  38. Kitano H (2002) Computational systems biology. Nature 420:206–210PubMedCrossRefGoogle Scholar
  39. Kolkman A et al (2006) Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol 2:2006.0026Google Scholar
  40. Kresnowati MTAP et al (2006) When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2:49Google Scholar
  41. Kuhn KM et al (2001) Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source. Mol Cell Biol 21(3):916–927PubMedCentralPubMedCrossRefGoogle Scholar
  42. Lashkari DA et al (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci USA 94:13057–13062PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lee K-S et al (2011) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108(3):621–631PubMedCrossRefGoogle Scholar
  44. Lee TI et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(October):799–804PubMedCrossRefGoogle Scholar
  45. Lehner B, Tischler J, Fraser AG (2005) Systems biology: where it is at in 2005. Genome Biol 6(8):338PubMedCentralPubMedCrossRefGoogle Scholar
  46. Liu Z, Butow RA (1999) A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol 19(10):6720–6728PubMedCentralPubMedGoogle Scholar
  47. Maris AJA Van et al (2004) Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol 70(1):159–166PubMedCentralPubMedCrossRefGoogle Scholar
  48. Maris AJA Van et al (2003) Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 69(4):2094–2099PubMedCentralPubMedCrossRefGoogle Scholar
  49. Mesarovic MD (1968) Systems theory and biology- view of a theoretician. In: Mesarovi MD (ed) Systems theory and biology. Springer, New York, pp 59–87Google Scholar
  50. Mirisola MG, Gallo A, De Leo G (2007) Ras-pathway has a dual role in yeast galactose metabolism. FEBS Lett 581(10):2009–2016PubMedCrossRefGoogle Scholar
  51. Moriya H, Johnston M (2004) Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci USA 101(6):1572–1577PubMedCentralPubMedCrossRefGoogle Scholar
  52. Nielsen J, Olsson L (2002) An expanded role for microbial physiology in metabolic engineering and functional genomics: moving towards systems biology 1. FEMS Yeast Res 2:175–181PubMedCrossRefGoogle Scholar
  53. Nobel D (1960) Cardiac action and pacemaker potentials based on Hodgkin-huxley equations. Nature 5(188):495–497CrossRefGoogle Scholar
  54. Noor E et al (2010) Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol Cell 39(5):809–820PubMedCrossRefGoogle Scholar
  55. Oliveira AP et al (2012) Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol 8(623):623PubMedCentralPubMedGoogle Scholar
  56. Ostergaard S et al (2000) Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat Biotechnol 18(12):1283–1286PubMedCrossRefGoogle Scholar
  57. Osterlund T et al (2013) Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol 7(1):36PubMedCentralPubMedCrossRefGoogle Scholar
  58. Oud B, Flores C-L et al (2012) An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 11:131PubMedCentralPubMedCrossRefGoogle Scholar
  59. Oud B, van Maris AJ A et al (2012a) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12(2):183–196Google Scholar
  60. Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci USA 102(8):2685–2689PubMedCentralPubMedCrossRefGoogle Scholar
  61. Picotti P et al (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494(7436):266–270PubMedCentralPubMedCrossRefGoogle Scholar
  62. Pronk JT, Steensmays HY, van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633PubMedCrossRefGoogle Scholar
  63. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62PubMedCentralPubMedCrossRefGoogle Scholar
  64. Schmidt MC et al (1999) Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19(7):4561–4571PubMedCentralPubMedGoogle Scholar
  65. Schmitt HD, Zimmermann FK (1982) Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J Bacteriol 151(3):1146–1152PubMedCentralPubMedGoogle Scholar
  66. Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22(10):1261–1267PubMedCrossRefGoogle Scholar
  67. Usaite R et al (2009) Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 5(319):319PubMedCentralPubMedGoogle Scholar
  68. Weng G (1999) Complexity in biological signaling systems. Science 284(5411):92–96PubMedCentralPubMedCrossRefGoogle Scholar
  69. Westergaard SL et al (2007) A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 96(1):134–145PubMedCrossRefGoogle Scholar
  70. Wolkenhauer O (2001) Systems biology: the reincarnation of systems theory applied in biology? Briefings in Bioinf 2(3):258–270CrossRefGoogle Scholar
  71. Youk H, van Oudenaarden A (2009) Growth landscape formed by perception and import of glucose in yeast. Nature 462(7275):875–879PubMedCentralPubMedCrossRefGoogle Scholar
  72. Zaman S et al (2009) Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 5(245):245PubMedCentralPubMedGoogle Scholar
  73. Zampar GG et al (2013) Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast. Mol Syst Biol 9(651):651PubMedCentralPubMedGoogle Scholar
  74. Zhang J et al (2011) Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol 7(545):545PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Systems and Synthetic Biology, Department of Chemical and Biological EngineeringChalmers University of TechnologyGothenburgSweden

Personalised recommendations