Quantum Probabilistic Description of Dealing with Risk and Ambiguity in Foraging Decisions

  • Peter WittekEmail author
  • Ik Soo Lim
  • Xavier Rubio-Campillo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8369)


A forager in a patchy environment faces two types of uncertainty: ambiguity regarding the quality of the current patch and risk associated with the background opportunities. We argue that the order in which the forager deals with these uncertainties has an impact on the decision whether to stay at the current patch. The order effect is formalised with a context-dependent quantum probabilistic framework. Using Heisenberg’s uncertainty principle, we demonstrate the two types of uncertainty cannot be simultaneously minimised, hence putting a formal limit on rationality in decision making. We show the applicability of the contextual decision function with agent-based modelling. The simulations reveal order-dependence. Given that foraging is a universal pattern that goes beyond animal behaviour, the findings help understand similar phenomena in other fields.


Quantum Probabilistic Description Current Patch FOR DEALING Order Dependence Bayesian Decision Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the European Commission Seventh Framework Programme under Grant Agreement Number FP7-601138 PERICLES. Xavier Rubio-Campillo is supported by the SimulPast Project (CSD2010-00034), funded by the CONSOLIDER-INGENIO2010 program of the Ministry of Science and Innovation – Spain. We also thank the reviewers for their insights, they helped us clarify conceptual issues.


  1. 1.
    Pyke, G.: Optimal foraging theory: a critical review. Annu. Rev. Ecol. Syst. 15, 523–575 (1984)CrossRefGoogle Scholar
  2. 2.
    Hills, T., Jones, M., Todd, P.: Optimal foraging in semantic memory. Psychol. Rev. 119, 431–440 (2012)CrossRefGoogle Scholar
  3. 3.
    Rushworth, M., Kolling, N., Sallet, J., Mars, R.: Valuation and decision-making in frontal cortex: one or many serial or parallel systems? Curr. Opin. Neurobiol. 22, 946–955 (2012)CrossRefGoogle Scholar
  4. 4.
    Rajala, A., Hantula, D.: Towards a behavioral ecology of consumption: delay-reduction effects on foraging in a simulated Internet mall. Manag. Decis. Econ. 21(3–4), 145–158 (2000)CrossRefGoogle Scholar
  5. 5.
    MacArthur, R., Pianka, E.: On optimal use of a patchy environment. Am. Naturalist 100(916), 603–609 (1966)CrossRefGoogle Scholar
  6. 6.
    Charnov, E.: Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9(2), 129–136 (1976)CrossRefzbMATHGoogle Scholar
  7. 7.
    Knight, F.: Risk, Uncertainty and Profit. Houghton Mifflin, Boston (1921)Google Scholar
  8. 8.
    Ellsberg, D.: Risk, ambiguity, and the Savage axioms. Q. J. Econ. 75(4), 643–669 (1961)CrossRefzbMATHGoogle Scholar
  9. 9.
    Houston, A., McNamara, J.: A sequential approach to risk-taking. Anim. Behav. 30(4), 1260–1261 (1982)CrossRefGoogle Scholar
  10. 10.
    Kacelnik, A., Bateson, M.: Risky theories - the effects of variance on foraging decisions. Am. Zool. 36(4), 402–434 (1996)Google Scholar
  11. 11.
    Freidin, E., Kacelnik, A.: Rational choice, context dependence, and the value of information in European starlings (Sturnus vulgaris). Science 334(6058), 1000–1002 (2011)CrossRefGoogle Scholar
  12. 12.
    Oaten, A.: Optimal foraging in patches: a case for stochasticity. Theor. Popul. Biol. 12(3), 263–285 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Green, R.: Bayesian birds: a simple example of Oaten’s stochastic model of optimal foraging. Theor. Popul. Biol. 18(2), 244–256 (1980)CrossRefzbMATHGoogle Scholar
  14. 14.
    Valone, T., Brown, J.: Measuring patch assessment abilities of desert granivores. Ecology 70(6), 1800–1810 (1989)CrossRefGoogle Scholar
  15. 15.
    Caraco, T., Martindale, S., Whittam, T.: An empirical demonstration of risk-sensitive foraging preferences. Anim. Behav. 28(3), 820–830 (1980)CrossRefGoogle Scholar
  16. 16.
    Stephens, D.: The logic of risk-sensitive foraging preferences. Anim. Behav. 29(2), 628–629 (1981)CrossRefGoogle Scholar
  17. 17.
    Anand, P.: Foundations of Rational Choice Under Risk. Oxford University Press, Oxford (1995)Google Scholar
  18. 18.
    Waksberg, A., Smith, A., Burd, M.: Can irrational behaviour maximise fitness? Behav. Ecol. Sociobiol. 63(3), 461–471 (2009)CrossRefGoogle Scholar
  19. 19.
    Shafir, S.: Intransitivity of preferences in honey bees: support for ‘comparative’ evaluation of foraging options. Anim. Behav. 48(1), 55–67 (1994)CrossRefGoogle Scholar
  20. 20.
    Waite, T.: Intransitive preferences in hoarding gray jays (Perisoreus canadensis). Behav. Ecol. Sociobiol. 50(2), 116–121 (2001)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Hurly, T., Oseen, M.: Context-dependent, risk-sensitive foraging preferences in wild rufous hummingbirds. Anim. Behav. 58(1), 59–66 (1999)CrossRefGoogle Scholar
  22. 22.
    Pompilio, L., Kacelnik, A.: Context-dependent utility overrides absolute memory as a determinant of choice. Proc. Natl. Acad. Sci. U S A 107(1), 508–512 (2010)CrossRefGoogle Scholar
  23. 23.
    Bateson, M.: Context-dependent foraging choices in risk-sensitive starlings. Anim. Behav. 64(2), 251–260 (2002)CrossRefGoogle Scholar
  24. 24.
    Kolling, N., Behrens, T., Mars, R., Rushworth, M.: Neural mechanisms of foraging. Science 336(6077), 95–98 (2012)CrossRefGoogle Scholar
  25. 25.
    Pitowsky, I.: Quantum Probability - Quantum Logic. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  26. 26.
    Khrennikov, A.: Ubiquitous Quantum Structure: From Psychology to Finance. Springer, Berlin (2010)CrossRefGoogle Scholar
  27. 27.
    Aerts, D., Czachor, M., Kuna, M., Sinervo, B., Sozzo, S.: Quantum probabilistic structures in competing lizard communities. arXiv preprint arXiv:1212.0109 (2012)Google Scholar
  28. 28.
    Aerts, D., Czachor, M., Kuna, M., Sozzo, S.: Systems, environments, and soliton rate equations: a non-Kolmogorovian framework for population dynamics. arXiv preprint arXiv:1303.0281 (2013)Google Scholar
  29. 29.
    Trueblood, J., Busemeyer, J.: A quantum probability account of order effects in inference. Cogn. Sci. 35, 1518–1552 (2011)CrossRefGoogle Scholar
  30. 30.
    Busemeyer, J., Pothos, E., Franco, R., Trueblood, J.: A quantum theoretical explanation for probability judgment errors. Psychol. Rev. 118(2), 193–218 (2011)CrossRefGoogle Scholar
  31. 31.
    Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics. Wiley, New York (1996)Google Scholar
  32. 32.
    Kitto, K., Boschetti, F., Bruza, P.: The quantum inspired modelling of changing attitudes and self-organising societies. In: Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A., Melucci, M. (eds.) QI 2012. LNCS, vol. 7620, pp. 1–12. Springer, Heidelberg (2012)Google Scholar
  33. 33.
    Rubio-Campillo, X.: Pandora: an HPC agent-based modelling framework. (2013). Accessed 01 April 2013
  34. 34.
    Wittek, P., Rubio-Campillo, X.: Scalable agent-based modelling with cloud HPC resources for social simulations. In: Proceedings of CloudCom-12, 4th IEEE International Conference on Cloud Computing Technology and Science, Taipei, Taiwan, pp. 355–362, December 2012Google Scholar
  35. 35.
    Bonet, B., Geffner, H.: Action selection for MDPs: anytime AO* vs. UCT. In: Proceedings of AAAI-12, 26th Conference on Artificial Intelligence, Toronto, Canada, July 2012Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Peter Wittek
    • 1
    Email author
  • Ik Soo Lim
    • 2
  • Xavier Rubio-Campillo
    • 3
  1. 1.University of BoråsBoråsSweden
  2. 2.Bangor UniversityBangorUK
  3. 3.Barcelona Supercomputing CentreBarcelonaSpain

Personalised recommendations