Statistical Relational Learning to Recognise Textual Entailment

  • Miguel Rios
  • Lucia Specia
  • Alexander Gelbukh
  • Ruslan Mitkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8403)

Abstract

We propose a novel approach to recognise textual entailment (RTE) following a two-stage architecture – alignment and decision – where both stages are based on semantic representations. In the alignment stage the entailment candidate pairs are represented and aligned using predicate-argument structures. In the decision stage, a Markov Logic Network (MLN) is learnt using rich relational information from the alignment stage to predict an entailment decision. We evaluate this approach using the RTE Challenge datasets. It achieves the best results for the RTE-3 dataset and shows comparable performance against the state of the art approaches for other datasets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Androutsopoulos, I., Malakasiotis, P.: A survey of paraphrasing and textual entailment methods. J. Artif. Int. Res. 38(1), 135–187 (2010)MATHGoogle Scholar
  2. 2.
    Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., Szpektor, I.: The second pascal recognising textual entailment challenge. In: Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, Venice, Italy (2006)Google Scholar
  3. 3.
    Beltagy, I., Chau, C., Boleda, G., Garrette, D., Erk, K., Mooney, R.: Montague meets markov: Deep semantics with probabilistic logical form. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity, Atlanta, Georgia, USA, vol. 1, pp. 11–21 (June 2013)Google Scholar
  4. 4.
    Chambers, N., Cer, D., Grenager, T., Hall, D., Kiddon, C., MacCartney, B., de Marneffe, M.C., Ramage, D., Yeh, E., Manning, C.D.: Learning alignments and leveraging natural logic. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 165–170. Association for Computational Linguistics, Prague (2007)Google Scholar
  5. 5.
    Chklovski, T., Pantel, P.: Verbocean: Mining the web for fine-grained semantic verb relations. In: Proceedings of EMNLP 2004, pp. 33–40 (2004)Google Scholar
  6. 6.
    Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.: Natural language processing (almost) from scratch. Journal of Machine Learning Research 12, 2493–2537 (2011)MATHGoogle Scholar
  7. 7.
    Dagan, I., Glickman, O., Magnini, B.: The pascal recognising textual entailment challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Garrette, D., Erk, K., Mooney, R.: Integrating logical representations with probabilistic information using Markov logic. In: Proceedings of the Ninth International Conference on Computational Semantics (IWCS 2011), pp. 105–114 (2011)Google Scholar
  9. 9.
    Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning). The MIT Press (2007)Google Scholar
  10. 10.
    Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B.: The third pascal recognizing textual entailment challenge. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, Prague, pp. 1–9 (2007)Google Scholar
  11. 11.
    Glickman, O., Dagan, I., Koppel, M.: A lexical alignment model for probabilistic textual entailment. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 287–298. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Harmeling, S.: An extensible probabilistic transformation-based approach to the third recognizing textual entailment challenge. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 137–142. Association for Computational Linguistics, Prague (2007)CrossRefGoogle Scholar
  13. 13.
    Kotlerman, L., Dagan, I., Szpektor, I., Zhitomirsky-geffet, M.: Directional distributional similarity for lexical inference. Nat. Lang. Eng. 16(4), 359–389 (2010)CrossRefGoogle Scholar
  14. 14.
    Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Montréal, Canada, pp. 768–774 (1998)Google Scholar
  15. 15.
    MacCartney, B., Galley, M., Manning, C.D.: A phrase-based alignment model for natural language inference. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pp. 802–811. Association for Computational Linguistics, Honolulu (2008)Google Scholar
  16. 16.
    MacCartney, B., Manning, C.D.: Natural logic for textual inference. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 193–200. Association for Computational Linguistics, Prague (2007)CrossRefGoogle Scholar
  17. 17.
    de Marneffe, M.C., MacCartney, B., Grenager, T., Cer, D., Rafferty, A., Manning, C.D.: Learning to distinguish valid textual entailments. In: Proceedings of the Second PASCAL Challenges Workshop on Recognising Textual Entailment, Venice, Italy (2006)Google Scholar
  18. 18.
    Mehdad, Y., Magnini, B.: A word overlap baseline for the recognizing textual entailment task (2009), http://hlt.fbk.eu/sites/hlt.fbk.eu/files/baseline.pdf
  19. 19.
    Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136 (2006)CrossRefGoogle Scholar
  20. 20.
    Rios, M., Aziz, W., Specia, L.: TINE: A metric to assess MT adequacy. In: Proceedings of the Sixth Workshop on Statistical Machine Translation, Edinburgh, Scotland, pp. 116–122 (2011)Google Scholar
  21. 21.
    Rios, M., Aziz, W., Specia, L.: UOW: Semantically informed text similarity. In: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), Montréal, Canada, pp. 673–678 (2012)Google Scholar
  22. 22.
    Wang, M., Manning, C.D.: Probabilistic tree-edit models with structured latent variables for textual entailment and question answering. In: Proceedings of the 23rd International Conference on Computational Linguistics, COLING 2010, Stroudsburg, PA, USA, pp. 1164–1172 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Miguel Rios
    • 1
  • Lucia Specia
    • 2
  • Alexander Gelbukh
    • 3
  • Ruslan Mitkov
    • 1
  1. 1.Research Group in Computational LinguisticsUniversity of WolverhamptonWolverhamptonUK
  2. 2.Department of Computer ScienceUniversity of SheffieldSheffieldUK
  3. 3.Centro de Investigación en ComputaciónInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations