Extended CFG Formalism for Grammar Checker and Parser Development

  • Daiga Deksne
  • Inguna Skadiņa
  • Raivis Skadiņš
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8403)


This paper reports on the implementation of grammar checkers and parsers for highly inflected and under-resourced languages. As classical context free grammar (CFG) formalism performs poorly on languages with a rich morphological feature system, we have extended the CFG formalism by adding syntactic roles, lexical constraints, and constraints on morpho-syntactic feature values. The formalism also allows to assign morpho-syntactic feature values to phrases and to specify optional constituents. The paper also describes how we are implementing the grammar checker by using two sets of rules – rules describing correct sentences and rules describing grammar errors. The same engine with a different rule set can be used for the different purposes – to parse the text or to find the grammar errors. The paper also describes the implementation of Latvian and Lithuanian parsers and grammar checkers and the quality measurement methods used for the quality assessment.


parsing grammar checking inflected languages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arppe, A.: Developing a grammar checker for Swedish. In: 12th Nordic Conference in Computational Linguistics (Nodalida 1999), pp. 13–27. Trondheim (2000)Google Scholar
  2. 2.
    Atwell, E.S.: How to detect grammatical errors in a text without parsing it. In: 3rd Conference of the European Chapter of the Association for Computational Linguistics, pp. 38–45. Association for Computational Linguistics, Copenhagen (1987)CrossRefGoogle Scholar
  3. 3.
    Backus, J.W.: The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM Conference. In: International Conference on Information Processing, pp. 125–132. UNESCO (1959)Google Scholar
  4. 4.
    Bates, M.: The theory and practice of augmented transition networks. In: Bolc, L. (ed.) Natural Language Communication with Computers. LNCS, vol. 63, pp. 191–254. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  5. 5.
    Birn, J.: Detecting grammar errors with Lingsoft’s Swedish grammar checker. In: 12th Nordic Conference in Computational Linguistics (Nodalida 1999), pp. 28–40. Trondheim (2000)Google Scholar
  6. 6.
    Chomsky, N.: Syntactic structures. Mouton, The Hague (1957)Google Scholar
  7. 7.
    Deksne, D., Skadiņš, R.: CFG Based Grammar Checker for Latvian. In: 18th Nordic Conference in Computational Linguistics (NODALIDA 2011), pp. 275–278. Riga (2011)Google Scholar
  8. 8.
    Domeij, R., Knutsson, O., Carlberger, J., Kann, V.: Granska: An efficient hybrid system for Swedish grammar checking. In: 12th Nordic Conference in Computational Linguistics (Nodalida 1999), pp. 49–56. Trondheim (2000)Google Scholar
  9. 9.
    Ehsan, N., Faili, H.: Grammatical and context-sensitive error correction using a statistical machine translation framework. Software: Practice and Experience 43(2), 187–206 (2013)Google Scholar
  10. 10.
    Gazdar, G.: Generalized Phrase Structure Grammar. Harvard University Press (1985)Google Scholar
  11. 11.
    Heidorn, G.E.: Intelligent writing assistance. In: Dale, R., Moisl, H., Somers, H. (eds.) Handbook of Natural Language Processing, ch. 8, pp. 181–207. Marcel Dekker, New York (2000)Google Scholar
  12. 12.
    Hagen, K., Johannessen, J. B., Lane, P.: Some problems related to the development of a grammar checker. Paper presented at NODALIDA 2001, the 2001 Nordic Conference in Computational Linguistics, May 21–22, 2001 (2001) Google Scholar
  13. 13.
    Izumi, E., Uchimoto, K., Saiga, T., Supnithi, T., Isahara, H.: Automatic error detection in the Japanese learners English spoken data. In: 41st Annual Meeting of the Association for Computational Linguistics (ACL 2003), Sapporo, pp. 145–148 (2003)Google Scholar
  14. 14.
    Kaplan, R.M., Bresnan, J.: Lexical-Functional Grammar: A formal system for grammatical representation. In: Bresnan, J. (ed.) The Mental Representation of Grammatical Relations, pp. 173–281. The MIT Press, Cambridge (1982)Google Scholar
  15. 15.
    Karlsson, F.: Constraint Grammar as a framework for parsing running text. In: 13th International Conference on Computational Linguistics (COLING 1990), Helsinki, vol. 3, pp. 168–173 (1990)Google Scholar
  16. 16.
    Martins, R.T., Hasegawa, R., Das Gracas VolpeNunes, M., Montilha, G., De Oliveira, O.N.: Linguistic issues in the development of ReGra: A grammar checker for Brazilian Portuguese. Natural Language Engineering 4(4), 287–307 (1998)CrossRefGoogle Scholar
  17. 17.
    Naber, D.: A rule-based style and grammar checker. Master’s thesis, University of Bielefeld (2003)Google Scholar
  18. 18.
    Ng, H.T., Wu, S.M., Wu, Y., Hadiwinoto, C., Tetreault, J.: The CoNLL-2013 Shared Task on Grammatical Error Correction. In: 17th Conference on Computational Natural Language Learning (CoNLL 2013), pp. 1–12. Association for Computational Linguistics (2013)Google Scholar
  19. 19.
    Pereira, F., Warren, D.: Definite clause grammars for language analysis–A survey of the formalism and a comparison with augmented transition networks. In: Artificial Intelligence, vol. 13(3), pp. 231–278. (1980) Google Scholar
  20. 20.
    Pollard, C., Sag, I.A.: Head-driven phrase structure grammar. University of Chicago Press, Chicago (1994)Google Scholar
  21. 21.
    Van Rijsbergen, C.J.: Evaluation. In: Information Retrieval, 2nd edn. Butterworth, Newton (1979)Google Scholar
  22. 22.
    Sågvall-Hein, A.: A Chart-Based Framework for Grammar Checking. In: 11th Nordic Conference in Computational Linguistics (Nodalida 1998), pp. 68–80 (1998)Google Scholar
  23. 23.
    Schmidt-Wigger, A.: Grammar and Style Checking in German. In: 2nd International Workshop on Controlled Language Applications (CLAW 1998). Language Technologies Institute, Carnegie Mellon University, Pittsburgh (1998)Google Scholar
  24. 24.
    Shaalan, K.: Arabic Gramcheck: A Grammar Checker for Arabic. Software: Practice and Experience 35(7), 643–665 (2005)Google Scholar
  25. 25.
    Sjöbergh, J., Knutsson, O.: Faking errors to avoid making errors: Very weakly supervised learning for error detection in writing. In: Recent Advances in Natural Language Processing IV (RANLP 2005), Borovets, pp. 506–512 (2004)Google Scholar
  26. 26.
    Younger, D.: Recognition and parsing of context-free languages in time n3. Information and Control 10(2), 189–208 (1967)CrossRefzbMATHGoogle Scholar
  27. 27.
    Vosse, T.: The Word Connection. Grammar-Based Spelling Error Correction in Dutch. Neslia Paniculata, Enschede (1994)Google Scholar
  28. 28.
    Xing, J., Wang, L., Wong, D.F., Chao, S., Zeng, X.: UM-Checker: A Hybrid System for English Grammatical Error Correction. In: 17th Conference on Computational Natural Language Learning (CoNLL-2013), vol. 34 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daiga Deksne
    • 1
  • Inguna Skadiņa
    • 1
  • Raivis Skadiņš
    • 1
  1. 1.TildeRigaLatvia

Personalised recommendations