Advertisement

A Novel Activity Recognition Approach Based on Mobile Phone

  • Lingxiang ZhengEmail author
  • Yanfu Cai
  • Zhanjian Lin
  • Weiwei Tang
  • Huiru Zheng
  • Haibin Shi
  • Bruce Liao
  • Jolly Wang
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 308)

Abstract

This paper presents a novel method for high-accuracy human activity recognition based on mobile phone acceleration sensors. Our approach includes two phases: the feature extraction phase and the classification phase. In feature extraction phase, we process tri-axial acceleration sensor data by combining the Independent Components Analysis (ICA) with the wavelet transform algorithm to get the features. In the classification phase, we apply the Support Vector Machine (SVM) algorithm to distinguish four types of activities (sitting, standing, walking and running). Experimental results show that the approach achieves an average accuracy of 98.78% over four types of activities, which outperforms the traditional method. The high accuracy indicates that this approach may facilitate the mobile phone based human activity recognition application.

Keywords

acceleration Independent Components Analysis wavelet transform SVM activity recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lara, Ó.D., Pérez, A.J., Labrador, M.A., Posada, J.D.: Centinela: A human activity recognition system based on acceleration and vital sign data. Pervasive and Mobile Computing (2011)Google Scholar
  2. 2.
    Tapia, E.M., Intille, S.S., Haskell, W., Larson, K., Wright, J., King, A., Friedman, R.: Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart monitor. In: Proc. Int. Symp. on Wearable Comp. Citeseer (2007)Google Scholar
  3. 3.
    Kao, T., Lin, C., Wang, J.: Development of a portable activity detector for daily activity recognition. In: IEEE International Symposium on Industrial Electronics (ISIE 2009), pp. 115–120. IEEE (2009)Google Scholar
  4. 4.
    Chen, Y., Yang, J., Liou, S., Lee, G., Wang, J.: Online classifier construction algorithm for human activity detection using a tri-axial accelerometer. Appl. Math. Comput. 205(2), 849–860 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    He, Z., Jin, L.: Activity recognition from acceleration data based on discrete consine transform and SVM. In: IEEE International Conference on Systems, Man and Cybernetics (SMC 2009), pp. 5041–5044. IEEE (2009)Google Scholar
  6. 6.
    He, Z., Jin, L.: Activity recognition from acceleration data using AR model representation and SVM. In: 2008 International Conference on Machine Learning and Cybernetics, pp. 2245–2250. IEEE (2008)Google Scholar
  7. 7.
    Buhmann, J.M., Busetto, A., Vezhnevets, A.: Statistical Learning Theory (2013)Google Scholar
  8. 8.
    Hastie, T., Tibshirani, R., Friedman, J.J.H.: The elements of statistical learning, vol. 1. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Koldovsky, Z., Tichavsky, P., Oja, E.: Efficient variant of algorithm FastICA for independent component analysis attaining the Cramér-Rao lower bound. IEEE Transactions on Neural Networks 17(5), 1265–1277 (2006)CrossRefGoogle Scholar
  10. 10.
    Malathi, V., Marimuthu, N.S.: Wavelet transform and support vector machine approach for fault location in power transmission line. International Journal of Electrical and Electronics Engineering 4, 272–277 (2010)Google Scholar
  11. 11.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lingxiang Zheng
    • 1
    Email author
  • Yanfu Cai
    • 1
  • Zhanjian Lin
    • 1
  • Weiwei Tang
    • 1
  • Huiru Zheng
    • 2
  • Haibin Shi
    • 1
  • Bruce Liao
    • 3
  • Jolly Wang
    • 3
  1. 1.School of Information Science and EngineeringXiamen UniversityXiamenChina
  2. 2.School of Computing and MathematicsUniversity of UlsterJordanstownU.K.
  3. 3.Intel (China) Co., Ltd.ShanghaiChina

Personalised recommendations