Generic Distributed Sensing in Support of Context Awareness in Ambient Assisted Living

  • Bin XiaoEmail author
  • Theo Kanter
  • Rahim Rahmani
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 308)


Researches in ambient assisted living have so far faced three important challenges: (1) Lack of a comprehensive approach to capture user needs that are generic; i.e., not limited to specific events, but as generic related to the user. (2) Lack of a highly flexible and scalable platform for the distributed sharing and processing of context between nodes in IoT networks. (3) Increased amount of communication and devices with sensors participating in the acquisition, processing and sharing of context further challenges both computation capability and storage capacity of the system. In this paper, we address these limitations and present novel support, applied in a system for remote assistance of elderly. The support comprehensively retrieves user needs from generic context, via a scalable overlay providing increment of processing capability and storage. Further, the support self-organizes entities into generic context from distributed sensing, using the Dependent Context Pattern (DCP) based on the Context Virtualizing Platform (CVP).


Generic Context Context Dependency User Needs Virtualization Platform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiriac, S., Saurer, B.R.: An Ambient Assisted Living Monitoring System for Activity Recognition - Results from the First Evaluation Stages. In: Fifth German AAL Congress, Berlin, Germany (2012)Google Scholar
  2. 2.
    Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive and Mobile Computing 5, 277–298 (2009)CrossRefGoogle Scholar
  3. 3.
    Boulos, M.N.K., et al.: Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples. International Journal of Health Geographics 10(1), 67 (2011)CrossRefGoogle Scholar
  4. 4.
    Guo, B., et al.: From the internet of things to embedded intelligence. World Wide Web Journal, 1–22 (September 2012)Google Scholar
  5. 5.
    Fitton, D., Sundramoorthy, V., Kortuem, G., Brown, J., Efstratiou, C., Finney, J.: Exploring the Design of Pay-Per-Use Objects in the Construction Domain. In: Roggen, D., Lombriser, C., Tröster, G., Kortuem, G., Havinga, P. (eds.) EuroSSC 2008. LNCS, vol. 5279, pp. 192–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Emiliani, P.L., Stephanidis, C.: Universal access to ambient intelligence environments: Opportunities and challenges for people with disabilities. IBM Systems Journal 44(3), 605–619 (2005)CrossRefGoogle Scholar
  7. 7.
    Sit, G.F., et al.: Application-Oriented Fusion and Aggregation of Sensor Data. In: Ambient Assisted Living, pp. 3–13. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Storf, H., Kleinberger, T., Becker, M., Schmitt, M., Bomarius, F., Prueckner, S.: An event-driven approach to activity recognition in ambient assisted living. In: Tscheligi, M., de Ruyter, B., Markopoulus, P., Wichert, R., Mirlacher, T., Meschterjakov, A., Reitberger, W. (eds.) AmI 2009. LNCS, vol. 5859, pp. 123–132. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Becker, M., et al.: Approaching ambient intelligent home care systems. In: Pervasive Health Conference and Workshops. IEEE (2006)Google Scholar
  10. 10.
    Metso, A., et al.: Ubiquitous Services for Senior Citizens-Living Process Detection and Middleware. In: Eighth IEEE/ACIS International Conference on Computer and Information Science, ICIS 2009. IEEE (2009)Google Scholar
  11. 11.
    Kanter, T., et al.: Mediasense–an internet of things platform for scalable and decentralized context sharing and control (2012)Google Scholar
  12. 12.
    Schmidt, A., Beigl, M., Gellersen, H.-W.: There is more to context than location. Computers & Graphics 23(6), 893–901 (1999)CrossRefGoogle Scholar
  13. 13.
    Sheth, A.: Citizen Sensing, Social Signals, and Enriching Human Experience. IEEE Internet Computing 13(14), 80–85 (2009)Google Scholar
  14. 14.
    Sobania, J.-A.: Memory Management in a Many-Core Distributed Hypervisor. Ph. D. Retreat of the HPI Research School an Service-oriented Systems Engineering, 165Google Scholar
  15. 15.
    Wang, J., He, X., Deng, Y.: Introducing software architecture specification and analysis in SAM through an example. Information and Software Technology 41(7), 451–467 (1999)CrossRefGoogle Scholar
  16. 16.
    Reeves, S., Clarke, M.: Logic for computer science. Addison-Wesley, Wokingham (1990)Google Scholar
  17. 17.
    Baier, C., Katoen, J.-P.: Principles of model checking, vol. 26202649. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  18. 18.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An openSource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G., et al. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer and Systems SciencesStockholm UniversityKistaSweden

Personalised recommendations