Decision Procedures for Flat Array Properties

  • Francesco Alberti
  • Silvio Ghilardi
  • Natasha Sharygina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8413)

Abstract

We present new decidability results for quantified fragments of theories of arrays. Our decision procedures are fully declarative, parametric in the theories of indexes and elements and orthogonal with respect to known results. We also discuss applications to the analysis of programs handling arrays.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstraction with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Alberti, F., Ghilardi, S., Sharygina, N.: Decision procedures for flat array properties. Technical Report 2013/04, University of Lugano (October 2013), http://www.inf.usi.ch/research_publication.htm?id=77
  3. 3.
    Alberti, F., Ghilardi, S., Sharygina, N.: Definability of accelerated relations in a theory of arrays and its applications. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 23–39. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL implementation secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Börger, E., Grädel, E., Gurevich, Y.: The classical decision problem. Perspectives in Mathematical Logic. Springer, Berlin (1997)CrossRefMATHGoogle Scholar
  7. 7.
    Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundamenta Informaticae (91), 275–303 (2009)Google Scholar
  8. 8.
    Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Detlefs, D.L., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. Technical Report HPL-2003-148, HP Labs (2003)Google Scholar
  12. 12.
    Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Ganzinger, H.: Shostak light. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 332–346. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Habermehl, P., Iosif, R., Vojnar, T.: A logic of singly indexed arrays. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 558–573. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays? In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 474–489. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Halpern, J.Y.: Presburger arithmetic with unary predicates is \(\Pi^1_1\) complete. J. Symbolic Logic 56(2), 637–642 (1991), doi:10.2307/2274706CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 265–281. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Lewis, H.B.: Complexity of solvable cases of the decision problem for the predicate calculus. In: 19th Ann. Symp. on Found. of Comp. Sci. pp. 35–47. IEEE (1978)Google Scholar
  20. 20.
    Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propagation and Its Application to Difference Logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Oppen, D.C.: A superexponential upper bound on the complexity of Presburger arithmetic. J. Comput. System Sci. 16(3), 323–332 (1978)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Ranise, S., Tinelli, C.: The Satisfiability Modulo Theories Library, SMT-LIB (2006), http://www.smt-lib.org
  23. 23.
    Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 377–391. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Semënov, A.L.: Logical theories of one-place functions on the set of natural numbers. Izvestiya: Mathematics 22, 587–618 (1984)MATHGoogle Scholar
  25. 25.
    Shoenfield, J.R.: Mathematical logic. Association for Symbolic Logic, Urbana (2001) (reprint of the 1973 second printing )Google Scholar
  26. 26.
    Tinelli, C., Zarba, C.G.: Combining nonstably infinite theories. J. Automat. Reason. 34(3), 209–238 (2005)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Francesco Alberti
    • 1
  • Silvio Ghilardi
    • 2
  • Natasha Sharygina
    • 1
  1. 1.University of LuganoLuganoSwitzerland
  2. 2.Università degli Studi di MilanoMilanItaly

Personalised recommendations