Compositional Invariant Generation for Timed Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8413)


In this paper we address the state space explosion problem inherent to model-checking timed systems with a large number of components. The main challenge is to obtain pertinent global timing constraints from the timings in the components alone. To this end, we make use of auxiliary clocks to automatically generate new invariants which capture the constraints induced by the synchronisations between components. The method has been implemented as an extension of the D-Finder tool and successfully experimented on several benchmarks.


Time System Mutual Exclusion Safety Property Reachable State Symbolic Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time applications. In: EMSOFT (2010)Google Scholar
  2. 2.
    de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. (1994)Google Scholar
  4. 4.
    Astefanoaei, L., Rayana, S.B., Bensalem, S., Bozga, M., Combaz, J.: Compositional invariant generation for timed systems. Technical Report TR-2013-5, Verimag Research Report (2013)Google Scholar
  5. 5.
    Badban, B., Leue, S., Smaus, J.-G.: Automated invariant generation for the verification of real-time systems. In: WING@ETAPS/IJCAR (2010)Google Scholar
  6. 6.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: SEFM (2006)Google Scholar
  7. 7.
    Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.: UPPAAL 4.0. In: QEST (2006)Google Scholar
  8. 8.
    Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional verification for component-based systems and application. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Berendsen, J., Vaandrager, F.W.: Compositional abstraction in real-time model checking. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 233–249. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Bornot, S., Sifakis, J.: An algebraic framework for urgency. Information and Computation (1998)Google Scholar
  12. 12.
    Bouyer, P.: Forward analysis of updatable timed automata. Form. Methods Syst. Des. (2004)Google Scholar
  13. 13.
    Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A model-checking tool for real-time systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time systems. Formal Methods in System Design (1992)Google Scholar
  15. 15.
    David, A., Larsen, K.G., Legay, A., Møller, M.H., Nyman, U., Ravn, A.P., Skou, A., Wasowski, A.: Compositional verification of real-time systems using Ecdar. STTT (2012)Google Scholar
  16. 16.
    de Boer, F.S., Hannemann, U., de Roever, W.-P.: Hoare-style compositional proof systems for reactive shared variable concurrency. In: Ramesh, S., Sivakumar, G. (eds.) FSTTCS 1997. LNCS, vol. 1346, pp. 267–283. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed automata. Mathematics in Computer Science (2012)Google Scholar
  18. 18.
    Gardey, G., Lime, D., Magnin, M., Roux, O(H.): Romeo: A tool for analyzing time petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 418–423. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. (1994)Google Scholar
  20. 20.
    Lamport, L.: A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. (1987)Google Scholar
  21. 21.
    Legay, A., Bensalem, S., Boyer, B., Bozga, M.: Incremental generation of linear invariants for component-based systems. In: ACSD (2013)Google Scholar
  22. 22.
    Lin, S.-W., Liu, Y., Hsiung, P.-A., Sun, J., Dong, J.S.: Automatic generation of provably correct embedded systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 214–229. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Salah, R.B., Bozga, M., Maler, O.: Compositional timing analysis. In: EMSOFT (2009)Google Scholar
  24. 24.
    Tripakis, S.: Verifying progress in timed systems. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 299–314. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  25. 25.
    Wang, F.: Redlib for the formal verification of embedded systems. In: ISoLA (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.UJF-Grenoble, CNRS VERIMAG UMR 5104GrenobleFrance

Personalised recommendations