The Unmet Challenge of Timed Systems

  • Oded Maler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8415)


Timed systems constitute a class of dynamical systems that live in an extremely useful level of abstraction. The paper stresses their importance in modeling without necessarily endorsing the orthodox approach for reasoning about them which is practiced in the theoretical and applied branches of formal verification.


Micro Model Reachability Graph Continuous Dynamical System Statistical Model Check Clock Valuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdeddaïm, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoretical Computer Science 354(2), 272–300 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: Proc. IFAC Symposium on System Structure and Control, pp. 469–474 (1998)Google Scholar
  6. 6.
    Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and linearity. Wiley, New York (1992)zbMATHGoogle Scholar
  7. 7.
    Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis, J.: Rigorous component-based system design using the BIP framework. IEEE Software 28(3), 41–48 (2011)CrossRefGoogle Scholar
  8. 8.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: SEFM, pp. 3–12 (2006)Google Scholar
  9. 9.
    Ben Salah, R.: On Timing Analysis of Large Systems. PhD thesis, INP Grenoble (2007)Google Scholar
  10. 10.
    Ben-Salah, R., Bozga, M., Maler, O.: Compositional timing analysis. In: EMSOFT (2009)Google Scholar
  11. 11.
    Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time petri nets. In: Proceedings IFIP (1983)Google Scholar
  12. 12.
    Bozga, M., Graf, S., Mounier, L.: IF-2.0: A validation environment for component-based real-time systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 343–348. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Caspi, P.: Réflexions sur la recherche appliquée (2004), Unpublished manuscript available at
  14. 14.
    Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer (2008)Google Scholar
  15. 15.
    Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    de Saint-Exupéry, A.: Le petit prince. Gallimard (1943)Google Scholar
  17. 17.
    Dill, D.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  18. 18.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Information and Computation 111(2), 193–244 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Henzinger, T.A.: Sooner is safer than later. Information Processing Letters 43(3), 135–141 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 226–251. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  21. 21.
    Kempf, J.-F.: On Computer-Aided Design-Space Exploration for Multi-Cores. PhD thesis, University of Grenoble (October 2012)Google Scholar
  22. 22.
    Maler, O.: Amir Pnueli and the dawn of hybrid systems. In: HSCC, pp. 293–295 (2010)Google Scholar
  23. 23.
    Maler, O.: On under-determined dynamical systems. In: EMSOFT, pp. 89–96 (2011)Google Scholar
  24. 24.
    Maler, O., Larsen, K., Krogh, B.: On zone-based analysis of duration probabilistic automata. In: INFINITY, pp. 33–46 (2010)Google Scholar
  25. 25.
    Maler, O., Pnueli, A.: Timing analysis of asynchronous circuits using timed automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 189–205. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  26. 26.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3(2), 114–125 (1959)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sifakis, J., Yovine, S.: Compositional specification of timed systems. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 347–359. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  28. 28.
    Tripakis, S., Courcoubetis, C.: Extending Promela and Spin for real timeGoogle Scholar
  29. 29.
    Yovine, S.: Methods and tools for the symbolic verification of real-time systems. PhD thesis, INP, Grenoble (1993) (in French)Google Scholar
  30. 30.
    Yovine, S.: Kronos: A verification tool for real-time systems. STTT 1(1-2), 123–133 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Oded Maler
    • 1
  1. 1.CNRS-VERIMAG, University of GrenobleGieresFrance

Personalised recommendations