Characterization of Ribonucleic Acids and Their Modifications by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

  • Kathrin Breuker
Part of the Physical Chemistry in Action book series (PCIA)


Recent advances in electrospray ionization and the extension of radical ion based dissociation techniques to ribonucleic acids (RNA) were key factors for developing top-down mass spectrometry as a powerful method for the detailed characterization of posttranscriptional and synthetic modifications of RNA. This new approach identifies and localizes all mass-altering modifications without the need for labeling reactions, and can be used for characterization of RNA of unknown sequence.


RNA Posttranscriptional modifications Synthetic modifications Collisionally activated dissociation Electron detachment dissociation Top-down mass spectrometry Fourier transform ion cyclotron resonance Mass spectrometry 



Blackbody infrared multiphoton dissociation


Collisionally activated dissociation (synonymous with CID)


Collision-induced dissociation (synonymous with CAD)


Complementary desoxyribonucleic acid


Desoxyribonucleic acid


Electron capture dissociation


Electron detachment dissociation


Electron photodetachment dissociation


Electrospray ionization


Fourier transform ion cyclotron resonance


Infrared multiphoton dissociation


Matrix-assisted laser desorption/ionization


Mass spectrometry


Negative electron transfer dissociation




Posttranscriptional modification


Ribonucleic acid


Small interfering RNA


Transfer RNA



Funding was provided by the Austrian Science Fund (FWF): Y372. The author thanks Monika Taucher, Barbara Storch (nee Ganisl), Christian Riml, Heidelinde Glasner, Moritz Schennach, and Ronald Micura for discussion.


  1. 1.
    Hüttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype? Trends Genet 21:289–297CrossRefGoogle Scholar
  2. 2.
    Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145CrossRefGoogle Scholar
  3. 3.
    Kellner S, Burhenne J, Helm M (2010) Detection of RNA modifications. RNA Biol 7:237–247CrossRefGoogle Scholar
  4. 4.
    Le DD, Fujimori DG (2012) Protein and nucleic acid methylating enzymes: mechanisms and regulation. Curr Opin Chem Biol 16:507–515CrossRefGoogle Scholar
  5. 5.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71CrossRefGoogle Scholar
  6. 6.
    Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935–2939CrossRefGoogle Scholar
  7. 7.
    Bahr U, Aygun H, Karas M (2009) Sequencing of single and double stranded RNA oligonucleotides by acid hydrolysis and MALDI mass spectrometry. Anal Chem 81:3173–3179CrossRefGoogle Scholar
  8. 8.
    Berhane BT, Limbach PA (2003) Stable isotope labeling for matrix-assisted laser desorption/ionization mass spectrometry and post-source decay analysis of ribonucleic acids. J Mass Spectrom 38:872–878CrossRefGoogle Scholar
  9. 9.
    Meng ZJ, Limbach PA (2004) RNase mapping of intact nucleic acids by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) and O-18 labeling. Int J Mass Spectrom 234:37–44CrossRefGoogle Scholar
  10. 10.
    Meng ZJ, Limbach PA (2005) Shotgun sequencing small oligonucleotides by nozzle-skimmer dissociation and electrospray ionization mass spectrometry. Eur J Mass Spectrom 11:221–229CrossRefGoogle Scholar
  11. 11.
    Hossain M, Limbach PA (2007) Mass spectrometry-based detection of transfer RNAs by their signature endonuclease digestion products. RNA 13:295–303CrossRefGoogle Scholar
  12. 12.
    Taucher M, Ganisl B, Breuker K (2011) Identification, localization, and relative quantitation of pseudouridine in RNA by tandem mass spectrometry of hydrolysis products. Int J Mass Spectrom 304:91–97CrossRefGoogle Scholar
  13. 13.
    Ganisl B, Taucher M, Riml C, Breuker K (2011) Charge as you like! Efficient manipulation of negative ion net charge in electrospray ionization of proteins and nucleic acids. Eur J Mass Spectrom 17:333–343CrossRefGoogle Scholar
  14. 14.
    Greig MJ, Gaus HJ, Griffey RH (1996) Negative ionization micro electrospray mass spectrometry of oligonucleotides and their complexes. Rapid Commun Mass Spectrom 10:47–50CrossRefGoogle Scholar
  15. 15.
    Griffey RH, Sasmor H, Greig MJ (1997) Oligonucleotide charge states in negative ionization electrospray mass spectrometry are a function of solution ammonium ion concentration. J Am Soc Mass Spectrom 8:155–160CrossRefGoogle Scholar
  16. 16.
    Taucher M, Rieder U, Breuker K (2010) Minimizing base loss and internal fragmentation in collisionally activated dissociation of multiply deprotonated RNA. J Am Soc Mass Spectrom 21:278–285CrossRefGoogle Scholar
  17. 17.
    Greig M, Griffey RH (1995) Utility of organic bases for improved electrospray mass spectrometry of oligonucleotides. Rapid Commun Mass Spectrom 9:97–102CrossRefGoogle Scholar
  18. 18.
    Perreault DM, Anslyn EV (1997) Unifying the current data on the mechanism of cleavage - transesterification of RNA. Angew Chem Int Ed 36:432–450CrossRefGoogle Scholar
  19. 19.
    Oivanen M, Kuusela S, Lonnberg H (1998) Kinetics and mechanisms for the cleavage and isomerization of the phosphodiester bonds of RNA by Brønsted acids and bases. Chem Rev 98:961–990CrossRefGoogle Scholar
  20. 20.
    Taucher M, Breuker K (2010) Top-down mass spectrometry for sequencing of larger (up to 61 nt) RNA by CAD and EDD. J Am Soc Mass Spectrom 21:918–929CrossRefGoogle Scholar
  21. 21.
    Taucher M, Breuker K (2012) Characterization of modified RNA by top-down mass spectrometry. Angew Chem Int Ed 51:11289–11292CrossRefGoogle Scholar
  22. 22.
    Comisarow MB, Marshall AG (1974) Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 25:282–283CrossRefGoogle Scholar
  23. 23.
    Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35CrossRefGoogle Scholar
  24. 24.
    Senko MW, Hendrickson CL, Emmett MR, Shi SDH, Marshall AG (1997) External accumulation of ions for enhanced electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 8:970–976CrossRefGoogle Scholar
  25. 25.
    Schwartz JC, Senko MW, Syka JEP (2002) A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 13:659–669CrossRefGoogle Scholar
  26. 26.
    Taylor PK, Amster IJ (2003) Space charge effects on mass accuracy for multiply charged ions in ESI-FTICR. Int J Mass Spectrom 222:351–361CrossRefGoogle Scholar
  27. 27.
    Masselon C, Tolmachev AV, Anderson GA, Harkewicz R, Smith RD (2002) Mass measurement errors caused by “local” frequency perturbations in FTICR mass spectrometry. J Am Soc Mass Spectrom 13:99–106CrossRefGoogle Scholar
  28. 28.
    Zhang LK, Rempel D, Pramanik BN, Gross ML (2005) Accurate mass measurements by Fourier transform mass spectrometry. Mass Spectrom Rev 24:286–309CrossRefGoogle Scholar
  29. 29.
    Leach FE, Kharchenko A, Heeren RMA, Nikolaev E, Amster IJ (2010) Comparison of particle-in-cell simulations with experimentally observed frequency shifts between ions of the same mass-to-charge in Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 21:203–208CrossRefGoogle Scholar
  30. 30.
    Jeffries JB, Barlow SE, Dunn GH (1983) Theory of space charge shift of ion cyclotron resonance frequencies. Int J Mass Spectrom Ion Process 54:169–187CrossRefGoogle Scholar
  31. 31.
    Gorshkov MV, Marshall AG, Nikolaev EN (1993) Analysis and elimination of systematic errors originating from Coulomb mutual interaction and image charge in Fourier transform ion cyclotron resonance precise mass difference measurements. J Am Soc Mass Spectrom 4:855–868CrossRefGoogle Scholar
  32. 32.
    Hendrickson CL, Beu SC, Laude DA (1993) Two-dimensional Coulomb-induced frequency modulation in Fourier transform ion cyclotron resonance: a mechanism for line broadening at high mass and for large ion populations. J Am Soc Mass Spectrom 4:909–916CrossRefGoogle Scholar
  33. 33.
    Kelleher NL (2004) Top-down proteomics. Anal Chem 76:196A–203ACrossRefGoogle Scholar
  34. 34.
    Fridriksson EK, Beavil A, Holowka D, Gould HJ, Baird B, McLafferty FW (2000) Heterogeneous glycosylation of immunoglobulin E constructs characterized by top-down high-resolution 2D mass spectrometry. Biochemistry 39:3369–3376CrossRefGoogle Scholar
  35. 35.
    Bogdanov B, Smith RD (2005) Proteomics by FT-ICR mass spectrometry: top-down and bottom-up. Mass Spectrom Rev 24:168–200CrossRefGoogle Scholar
  36. 36.
    Loo RRO, Hayes R, Yang YN, Hung F, Ramachandran P, Kim N, Gunsalus R, Loo JA (2005) Top-down, bottom-up, and side-to-side proteomics with virtual 2D gels. Int J Mass Spectrom 240:317–325CrossRefGoogle Scholar
  37. 37.
    Chait BT (2006) Bottom-up or top-down? Science 314:65–66CrossRefGoogle Scholar
  38. 38.
    Breuker K, Jin M, Han XM, Jiang HH, McLafferty FW (2008) Top-down identification and characterization of biomolecules by mass spectrometry. J Am Soc Mass Spectrom 19:1045–1053CrossRefGoogle Scholar
  39. 39.
    Ma MM, Chen RB, Ge Y, He H, Marshall AG, Li LJ (2009) Combining bottom-up and top-down mass spectrometric strategies for de novo sequencing of the crustacean hyperglycemic hormone from cancer borealis. Anal Chem 81:240–247CrossRefGoogle Scholar
  40. 40.
    Wu S, Lourette NM, Tolic N, Zhao R, Robinson EW, Tolmachev AV, Smith RD, Pasa-Tolic L (2009) An integrated top-down and bottom-up strategy for broadly characterizing protein isoforms and modifications. J Proteome Res 8:1347–1357CrossRefGoogle Scholar
  41. 41.
    Cui WD, Rohrs HW, Gross ML (2011) Top-down mass spectrometry: recent developments, applications and perspectives. Analyst 136:3854–3864CrossRefGoogle Scholar
  42. 42.
    Lanucara F, Eyers CE (2013) Top-down mass spectrometry for the analysis of combinatorial post-translational modifications. Mass Spectrom Rev 32:27–42CrossRefGoogle Scholar
  43. 43.
    Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266CrossRefGoogle Scholar
  44. 44.
    Budnik BA, Haselmann KF, Zubarev RA (2001) Electron detachment dissociation of peptide di-anions: an electron-hole recombination phenomenon. Chem Phys Lett 342:299–302CrossRefGoogle Scholar
  45. 45.
    McLuckey SA, Goeringer DE (1997) Slow heating methods in tandem mass spectrometry. J Mass Spectrom 32:461–474CrossRefGoogle Scholar
  46. 46.
    Kellersberger KA, Yu E, Kruppa GH, Young MM, Fabris D (2004) Top-down characterization of nucleic acids modified by structural probes using high-resolution tandem mass spectrometry and automated data interpretation. Anal Chem 76:2438–2445CrossRefGoogle Scholar
  47. 47.
    Huang TY, Liu J, Liang XR, Hodges BDM, McLuckey SA (2008) Collision-induced dissociation of intact duplex and single-stranded siRNA anions. Anal Chem 80:8501–8508CrossRefGoogle Scholar
  48. 48.
    Huang TY, Liu JA, McLuckey SA (2010) Top-down tandem mass spectrometry of tRNA Via ion trap collision-induced dissociation. J Am Soc Mass Spectrom 21:890–898CrossRefGoogle Scholar
  49. 49.
    Hofstadler SA, Sannes-Lowery KA, Hannis JC (2005) Analysis of nucleic acids by FTICR MS. Mass Spectrom Rev 24:265–285CrossRefGoogle Scholar
  50. 50.
    Gardner MW, Li N, Ellington AD, Brodbelt JS (2010) Infrared multiphoton dissociation of small-interfering RNA anions and cations. J Am Soc Mass Spectrom 21:580–591CrossRefGoogle Scholar
  51. 51.
    McLuckey SA, Van Berkel GJ, Glish GL (1992) Tandem mass spectrometry of small, multiply charged oligonucleotides. J Am Soc Mass Spectrom 3:60–70CrossRefGoogle Scholar
  52. 52.
    Huang TY, Kharlamova A, Liu J, McLuckey SA (2008) Ion trap collision-induced dissociation of multiply deprotonated RNA: c/y-ions versus (a-B)/w-ions. J Am Soc Mass Spectrom 19:1832–1840CrossRefGoogle Scholar
  53. 53.
    Tromp JM, Schürch S (2006) Electrospray ionization tandem mass spectrometry of biphenyl-modified oligo(deoxy)ribonucleotides. Rapid Commun Mass Spectrom 20:2348–2354CrossRefGoogle Scholar
  54. 54.
    Ganisl B, Valovka T, Hartl M, Taucher M, Bister K, Breuker K (2011) Electron detachment dissociation for top-down mass spectrometry of acidic proteins. Chem Eur J 17:4460–4469CrossRefGoogle Scholar
  55. 55.
    McFarland MA, Marshall AG, Hendrickson CL, Nilsson CL, Fredman P, Mansson JE (2005) Structural characterization of the GM1 ganglioside by infrared multiphoton dissociation/electron capture dissociation, and electron detachment dissociation electrospray ionization FT-ICR MS/MS. J Am Soc Mass Spectrom 16:752–762CrossRefGoogle Scholar
  56. 56.
    Adamson JT, Håkansson K (2007) Electron detachment dissociation of neutral and sialylated oligosaccharides. J Am Soc Mass Spectrom 18:2162–2172CrossRefGoogle Scholar
  57. 57.
    Wolff JJ, Chi LL, Linhardt RJ, Amster IJ (2007) Distinguishing glucuronic from iduronic acid in glycosaminoglycan tetrasaccharides by using electron detachment dissociation. Anal Chem 79:2015–2022CrossRefGoogle Scholar
  58. 58.
    Wolff JJ, Laremore TN, Busch AM, Linhardt RJ, Amster IJ (2008) Electron detachment dissociation of dermatan sulfate oligosaccharides. J Am Soc Mass Spectrom 19:294–304CrossRefGoogle Scholar
  59. 59.
    Yang J, Mo JJ, Adamson JT, Håkansson K (2005) Characterization of oligodeoxynucleotides by electron detachment dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 77:1876–1882CrossRefGoogle Scholar
  60. 60.
    Mo JJ, Håkansson K (2006) Characterization of nucleic acid higher order structure by high-resolution tandem mass spectrometry. Anal Bioanal Chem 386:675–681CrossRefGoogle Scholar
  61. 61.
    Kinet C, Gabelica V, Balbeur D, De Pauw E (2009) Electron detachment dissociation (EDD) pathways in oligonucleotides. Int J Mass Spectrom 283:206–213CrossRefGoogle Scholar
  62. 62.
    Yang J, Håkansson K (2006) Fragmentation of oligoribonucleotides from gas phase ion-electron reactions. J Am Soc Mass Spectrom 17:1369–1375CrossRefGoogle Scholar
  63. 63.
    Moore B, Sun QY, Hsu JC, Lee AH, Yoo GC, Ly T, Julian RR (2012) Dissociation chemistry of hydrogen-deficient radical peptide anions. J Am Soc Mass Spectrom 23:460–468CrossRefGoogle Scholar
  64. 64.
    Moore BN, Ly T, Julian RR (2011) Radical conversion and migration in electron capture dissociation. J Am Chem Soc 133:6997–7006CrossRefGoogle Scholar
  65. 65.
    Huzarska M, Ugalde I, Kaplan DA, Hartmer R, Easterling ML, Polfer NC (2010) Negative electron transfer dissociation of deprotonated phosphopeptide anions: choice of radical cation reagent and competition between electron and proton transfer. Anal Chem 82:2873–2878CrossRefGoogle Scholar
  66. 66.
    Wolff JJ, Leach FE, Laremore TN, Kaplan DA, Easterling ML, Linhardt RJ, Amster IJ (2010) Negative electron transfer dissociation of glycosaminoglycans. Anal Chem 82:3460–3466CrossRefGoogle Scholar
  67. 67.
    Huang TY, McLuckey SA (2011) Gas-phase ion/ion reactions of rubrene cations and multiply charged DNA and RNA anions. Int J Mass Spectrom 304:140–147CrossRefGoogle Scholar
  68. 68.
    Coon JJ, Shabanowitz J, Hunt DF, Syka JEP (2005) Electron transfer dissociation of peptide anions. J Am Soc Mass Spectrom 16:880–882CrossRefGoogle Scholar
  69. 69.
    Gabelica V, Tabarin T, Antoine R, Rosu F, Compagnon I, Broyer M, De Pauw E, Dugourd P (2006) Electron photodetachment dissociation of DNA polyanions in a quadrupole ion trap mass spectrometer. Anal Chem 78:6564–6572CrossRefGoogle Scholar
  70. 70.
    Antoine R, Joly L, Tabarin T, Broyer M, Dugourd P, Lemoine J (2007) Photo-induced formation of radical anion peptides. Electron photodetachment dissociation experiments. Rapid Commun Mass Spectrom 21:265–268CrossRefGoogle Scholar
  71. 71.
    Antoine R, Joly L, Allouche AR, Broyer M, Lemoine J, Dugourd P (2009) Electron photodetachment of trapped doubly deprotonated angiotensin peptides. UV spectroscopy and radical recombination. Eur Phys J D 51:117–124CrossRefGoogle Scholar
  72. 72.
    Larraillet V, Antoine R, Dugourd P, Lemoine J (2009) Activated-electron photodetachment dissociation for the structural characterization of protein polyanions. Anal Chem 81:8410–8416CrossRefGoogle Scholar
  73. 73.
    Larraillet V, Vorobyev A, Brunet C, Lemoine J, Tsybin YO, Antoine R, Dugourd P (2010) Comparative dissociation of peptide polyanions by electron impact and photo-induced electron detachment. J Am Soc Mass Spectrom 21:670–680CrossRefGoogle Scholar
  74. 74.
    Verkin BI, Sukhodub LF, Yanson IK (1976) Potentials of ionization of nitrogen bases of nucleic acids. Dokl Akad Nauk SSSR 228:1452–1455Google Scholar
  75. 75.
    Zakjevskii VV, King SJ, Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2006) Base and phosphate electron detachment energies of deoxyribonucleotide anions. J Am Chem Soc 128:13350–13351CrossRefGoogle Scholar
  76. 76.
    Rubio M, Roca-Sanjuan D, Serrano-Andres L, Merchan M (2009) Determination of the electron detachment energies of 2′-deoxyguanosine 5′-monophosphate anion: influence of the conformation. J Phys Chem B 113:2451–2457CrossRefGoogle Scholar
  77. 77.
    Horn DM, Zubarev RA, McLafferty FW (2000) Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. Proc Natl Acad Sci USA 97:10313–10317CrossRefGoogle Scholar
  78. 78.
    Horn DM, Zubarev RA, McLafferty FW (2000) Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom 11:320–332CrossRefGoogle Scholar
  79. 79.
    Kaur P, O’Connor PB (2006) Algorithms for automatic interpretation of high resolution mass spectra. J Am Soc Mass Spectrom 17:459–468CrossRefGoogle Scholar
  80. 80.
    Chen L, Sze SK, Yang H (2006) Automated intensity descent algorithm for interpretation of complex high-resolution mass spectra. Anal Chem 78:5006–5018CrossRefGoogle Scholar
  81. 81.
    Park K, Yoon JY, Lee S, Paek E, Park H, Jung HJ, Lee SW (2008) Isotopic peak intensity ratio based algorithm for determination of isotopic clusters and monoisotopic masses of polypeptides from high-resolution mass spectrometric data. Anal Chem 80:7294–7303CrossRefGoogle Scholar
  82. 82.
    Strohalm M, Kavan D, Novak P, Volny M, Havlicek V (2010) A cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82:4648–4651CrossRefGoogle Scholar
  83. 83.
    Senko MW, Beu SC, McLafferty FW (1995) Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions. J Am Soc Mass Spectrom 6:229–233CrossRefGoogle Scholar
  84. 84.
    Bruckl T, Globisch D, Wagner M, Müller M, Carell T (2009) Parallel isotope-based quantification of modified tRNA nucleosides. Angew Chem Int Ed 48:7932–7934CrossRefGoogle Scholar
  85. 85.
    Durairaj A, Limbach PA (2008) Matrix-assisted laser desorption/ionization mass spectrometry screening for pseudouridine in mixtures of small RNAs by chemical derivatization, RNase digestion and signature products. Rapid Commun Mass Spectrom 22:3727–3734CrossRefGoogle Scholar
  86. 86.
    Durairaj A, Limbach PA (2008) Mass spectrometry of the fifth nucleoside: a review of the identification of pseudouridine in nucleic acids. Anal Chim Acta 623:117–125CrossRefGoogle Scholar
  87. 87.
    Durairaj A, Limbach PA (2008) Improving CMC-derivatization of pseudouridine in RNA for mass spectrometric detection. Anal Chim Acta 612:173–181CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria

Personalised recommendations