Advertisement

Measurements in Proof Nets as Higher-Order Quantum Circuits

  • Akira Yoshimizu
  • Ichiro Hasuo
  • Claudia Faggian
  • Ugo Dal Lago
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8410)

Abstract

We build on the series of work by Dal Lago and coauthors and identify proof nets (of linear logic) as higher-order quantum circuits. By accommodating quantum measurement using additive slices, we obtain a comprehensive framework for programming and interpreting quantum computation. Specifically, we introduce a quantum lambda calculus MLLqm and define its geometry of interaction (GoI) semantics—in the style of token machines—via the translation of terms into proof nets. Its soundness, i.e. invariance under reduction of proof nets, is established. The calculus MLLqm attains a pleasant balance between expressivity (it is higher-order and accommodates all quantum operations) and concreteness of models (given as token machines, i.e. in the form of automata).

Keywords

Quantum Computation Monoidal Category Quantum Circuit Linear Logic Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    19th IEEE Symposium on Logic in Computer Science (LICS 2004), Turku, Finland, July 14-17. Proceedings. IEEE Computer Society (2004)Google Scholar
  2. 2.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: LICS [1], pp. 415–425Google Scholar
  3. 3.
    Dal Lago, U., Faggian, C.: On multiplicative linear logic, modality and quantum circuits. In: Jacobs, B., Selinger, P., Spitters, B. (eds.) QPL. EPTCS, vol. 95, pp. 55–66 (2011)Google Scholar
  4. 4.
    Dal Lago, U., Zorzi, M.: Wave-style token machines and quantum lambda calculi (2013)Google Scholar
  5. 5.
    Danos, V., Regnier, L.: The structure of multiplicatives. Arch. for Math. Logic 28(3), 181–203 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Girard, J.Y.: Geometry of interaction 1: Interpretation of system F. Logic Colloquium 88 (1989)Google Scholar
  8. 8.
    Girard, J.Y.: Proof-nets: The parallel syntax for proof-theory. In: Logic and Algebra, pp. 97–124. Marcel Dekker (1996)Google Scholar
  9. 9.
    Gisin, N., Methot, A.A., Scarani, V.: Pseudo-telepathy: input cardinality and Bell-type inequalities. International Journal of Quantum Information 5(4), 525–534 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. In: Boehm, H.J., Flanagan, C. (eds.) PLDI, pp. 333–342. ACM (2013)Google Scholar
  11. 11.
    Hasuo, I., Hoshino, N.: Semantics of higher-order quantum computation via geometry of interaction. In: LICS, pp. 237–246. IEEE Computer Society (2011)Google Scholar
  12. 12.
    Hoshino, N.: A modified GoI interpretation for a linear functional programming language and its adequacy. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 320–334. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Laurent, O.: A token machine for full geometry of interaction. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 283–297. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Mackie, I.: The geometry of interaction machine. In: POPL, pp. 198–208 (1995)Google Scholar
  15. 15.
    Mairson, H.G., Terui, K.: On the computational complexity of cut-elimination in linear logic. In: Blundo, C., Laneve, C. (eds.) ICTCS 2003. LNCS, vol. 2841, pp. 23–36. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Malherbe, O., Scott, P., Selinger, P.: Presheaf models of quantum computation: An outline. In: Coecke, B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games and Quantum Foundations. LNCS, vol. 7860, pp. 178–194. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Melliès, P.A.: Categorical semantics of linear logic. Panoramas et Synthèses, ch. 1, vol. 27, pp. 15–215. Société Mathématique de France (2009)Google Scholar
  18. 18.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)Google Scholar
  19. 19.
    Ömer, B.: Quantum programming in QCL. Master’s thesis, Institute of Information Systems, Technical University of Vienna (2000)Google Scholar
  20. 20.
    Pinto, J.S.: Implantation Parallèle avec la Logique Linéaire (Applications des Réseaux d’Interaction et de la Géométrie de l’Interaction). Ph.D. thesis, École Polytechnique, Main text in English (2001)Google Scholar
  21. 21.
    Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.) Semantic Techniques in Quantum Computation, pp. 135–172. Cambridge Univ. Press (2009)Google Scholar
  22. 22.
    Terui, K.: Proof nets and boolean circuits. In: LICS [1], pp. 182–191Google Scholar
  23. 23.
    van Tonder, A.: A lambda calculus for quantum computation. SIAM J. Comput. 33(5), 1109–1135 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Yoshimizu, A., Hasuo, I., Faggian, C., Dal Lago, U.: Measurements in proof nets as higher-order quantum circuits. Extended version with proofs (2014), www-mmm.is.s.u-tokyo.ac.jp/~ayoshimizu

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Akira Yoshimizu
    • 1
  • Ichiro Hasuo
    • 1
  • Claudia Faggian
    • 2
  • Ugo Dal Lago
    • 3
  1. 1.University of TokyoJapan
  2. 2.CNRSUniversité Paris DiderotParis 7France
  3. 3.Università di BolognaItaly

Personalised recommendations