Type Reconstruction for the Linear π-Calculus with Composite and Equi-Recursive Types

  • Luca Padovani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8412)

Abstract

We extend the linear π-calculus with composite and equi-recursive types in a way that enables the sharing of data containing linear values, provided that there is no overlapping access on such values. We show that the extended type system admits a complete type reconstruction algorithm and, as a by-product, we solve the problem of reconstruction for equi-recursive session types.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Courcelle, B.: Fundamental properties of infinite trees. Theor. Comp. Sci. 25, 95–169 (1983)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: PPDP 2012, pp. 139–150. ACM (2012)Google Scholar
  3. 3.
    Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 509–523. Springer, Heidelberg (1993)Google Scholar
  4. 4.
    Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Igarashi, A.: Type-based analysis of usage of values for concurrent programming languages (1997), http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/papers/
  6. 6.
    Igarashi, A., Kobayashi, N.: Type-based analysis of communication for concurrent programming languages. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 187–201. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Igarashi, A., Kobayashi, N.: Type Reconstruction for Linear π-Calculus with I/O Subtyping. Inf. and Comp. 161(1), 1–44 (2000)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Kobayashi, N.: Quasi-linear types. In: POPL 1999, pp. 29–42. ACM (1999)Google Scholar
  9. 9.
    Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K. (ed.) Formal Methods at the Crossroads. From Panacea to Foundational Support. LNCS, vol. 2757, pp. 439–453. Springer, Heidelberg (2003), Extended version at http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf CrossRefGoogle Scholar
  10. 10.
    Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM Trans. Program. Lang. Syst. 21(5), 914–947 (1999)CrossRefGoogle Scholar
  12. 12.
    Mezzina, L.G.: How to infer finite session types in a calculus of services and sessions. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 216–231. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Nestmann, U., Steffen, M.: Typing confluence. In: FMICS 1997, pp. 77–101 (1997), Also available as report ERCIM-10/97-R052, European Research Consortium for Informatics and Mathematics (1997)Google Scholar
  14. 14.
    Sangiorgi, D., Walker, D.: The Pi-Calculus - A theory of mobile processes. Cambridge University Press (2001)Google Scholar
  15. 15.
    Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: FPCA 1995, pp. 1–11 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luca Padovani
    • 1
  1. 1.Dipartimento di InformaticaUniversità di TorinoItaly

Personalised recommendations