Advertisement

Type Reconstruction for the Linear π-Calculus with Composite and Equi-Recursive Types

  • Luca Padovani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8412)

Abstract

We extend the linear π-calculus with composite and equi-recursive types in a way that enables the sharing of data containing linear values, provided that there is no overlapping access on such values. We show that the extended type system admits a complete type reconstruction algorithm and, as a by-product, we solve the problem of reconstruction for equi-recursive session types.

Keywords

Type System Type Variable Channel Type Type Expression Type Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Courcelle, B.: Fundamental properties of infinite trees. Theor. Comp. Sci. 25, 95–169 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: PPDP 2012, pp. 139–150. ACM (2012)Google Scholar
  3. 3.
    Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 509–523. Springer, Heidelberg (1993)Google Scholar
  4. 4.
    Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Igarashi, A.: Type-based analysis of usage of values for concurrent programming languages (1997), http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/papers/
  6. 6.
    Igarashi, A., Kobayashi, N.: Type-based analysis of communication for concurrent programming languages. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 187–201. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Igarashi, A., Kobayashi, N.: Type Reconstruction for Linear π-Calculus with I/O Subtyping. Inf. and Comp. 161(1), 1–44 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Kobayashi, N.: Quasi-linear types. In: POPL 1999, pp. 29–42. ACM (1999)Google Scholar
  9. 9.
    Kobayashi, N.: Type systems for concurrent programs. In: Aichernig, B.K. (ed.) Formal Methods at the Crossroads. From Panacea to Foundational Support. LNCS, vol. 2757, pp. 439–453. Springer, Heidelberg (2003), Extended version at http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf CrossRefGoogle Scholar
  10. 10.
    Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM Trans. Program. Lang. Syst. 21(5), 914–947 (1999)CrossRefGoogle Scholar
  12. 12.
    Mezzina, L.G.: How to infer finite session types in a calculus of services and sessions. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 216–231. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Nestmann, U., Steffen, M.: Typing confluence. In: FMICS 1997, pp. 77–101 (1997), Also available as report ERCIM-10/97-R052, European Research Consortium for Informatics and Mathematics (1997)Google Scholar
  14. 14.
    Sangiorgi, D., Walker, D.: The Pi-Calculus - A theory of mobile processes. Cambridge University Press (2001)Google Scholar
  15. 15.
    Turner, D.N., Wadler, P., Mossin, C.: Once upon a type. In: FPCA 1995, pp. 1–11 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luca Padovani
    • 1
  1. 1.Dipartimento di InformaticaUniversità di TorinoItaly

Personalised recommendations